修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Reply to Comment on a??Photo-Controlled Reversible Microtubule Assembly Mediated by Paclitaxel-Modified Cyclodextrina??

DOI:10.1002/anie.202000894 期刊:Angewandte Chemie International Edition 出版年份:2020 更新时间:2025-09-23 15:19:57
摘要: In a Correspondence on our previous study “Photo-Controlled Reversible Microtubule Assembly Mediated by Paclitaxel-Modified Cyclodextrin” published in this journal in 2018,[1a] Thorn-Seshold comments on our results.[1b] First of all, we would like to appreciate his comments and interest in our work. The aggregation behavior of microtubules (MTs) in our work has been demonstrated from the viewpoint of macrocycle-based host–guest complexation at the supramolecular level and subsequently, the MT stabilizers based on azobenzene-modified paclitaxel (PTX) derivatives as photoswitchable small molecules have been investigated by Thorn-Seshold and co-workers in 2019.[2] In our case, the microscopy results showed that the MT morphology was dramatically affected by the photoisomeric complexation between cyclodextrin (CD) and arylazopyrazole (AAP). No fibrous assembly as free MT could be observed in the presence of free PTX-CD, PTX-AAP, or their inclusion complex in the cis/trans states. Therefore, the introduction of CD and AAP definitely influenced the self-assembling behavior between PTX and MT. Moreover, fluorescent-dye-staining assays demonstrated that the PTX-derived host and guest compounds still possessed MT-targeting ability to some extent, because MT could be co-labeled by FITC-tagged antibodies and adamantane-containing RhB. Thus, the microtubular aggregation was proposed as one of the possible assembling modes in Scheme 1 (cartoon presentation). The binding mode of MT with CD and AAP was directly deduced from our microscopy images and cellular confocal experiments. The biological effect in our work may be jointly attributed to both the PTX-dependent pathway (PTX-induced microtubular stabilization) and the PTX-independent pathway (complexation-induced multivalent supramolecular cross-linkage) at the nanometer scale.[3] Under these circumstances, one reasonable explanation is that the latter (independent) effect may become comparable to the former (dependent) one when the MT affinity is reduced by chemical modification at the 2’-OH position of PTX. Moreover, as a widely studied macrocyclic receptor in supramolecular chemistry, CD can form a diversity of supramolecular assemblies.[4] To determine the precise binding mode, in addition to the viewpoint of structural biology for evaluating the original PTX–MT interaction at the single-molecule level, many other factors and multiple supramolecular noncovalent interactions (e.g., self-inclusion, self-exclusion, amphiphilicity, extensive hydrogen bonding, and supramolecular multivalency/cooperativity) between PTX-CD and PTX-AAP should also be taken into account. For example, the multivalent inclusion complexation between multiple CD and PTX molecules may confer high stability to the nano-assembly.[5] Therefore, in our opinion, no binding mode can be exclusively confirmed at the present time until the hyperfine structures of such multicomponent CD–protein assemblies have been obtained both in solution and in the solid state (e.g., in a single crystal). Moreover, azobenzene/CD is one of the most frequently used host–guest pairs in adjusting the assembling/disassembling behavior of proteins and other biomacromolecules.[6] Meanwhile, AAP is a new type of azo compound, which possesses quite distinct photophysical behavior compared to conventional azobenzenes, such as enhanced photostability and photoconversion efficiency. The biological effect of pristine AAP on pure MT may deserve further attention, but this aspect was outside the scope of our previous study. Overall, based on NMR, TEM, UV/Vis transmittance, and confocal microscopy experiments, we clearly demonstrated in our previous study that 1) the MT self-assembling morphology can be strongly affected by the host–guest complexation between CD and AAP, and that 2) complexation-induced MT aggregation can be realized in a cellular environment. Thus, our work provides an alternative supramolecular chemistry method to modulate a biomacromolecular assembling process. Finally, we would like to thank Dr. Thorn-Seshold for his constructive suggestions and express our hope that we can improve the chemical simulation and gain further insight into the biological mechanism in further work.
作者: Ying-Ming Zhang,Qilin Yu,Yu Liu
AI智能分析
纠错
研究概述 实验方案

To address the comments on the previous study regarding the photo-controlled reversible microtubule assembly mediated by paclitaxel-modified cyclodextrin and to emphasize the importance of photo-responsive noncovalent complexation in the modulation of microtubule morphology and aggregation behavior.

The study demonstrated that the MT self-assembling morphology can be strongly affected by the host–guest complexation between CD and AAP, and that complexation-induced MT aggregation can be realized in a cellular environment. It provides an alternative supramolecular chemistry method to modulate a biomacromolecular assembling process. Further work is needed to improve chemical simulation and gain insight into the biological mechanism.

The exclusive binding mode and mechanism need to be further investigated due to multiple host–guest associations at the supramolecular level. The biological effect of pristine AAP on pure MT was outside the scope of the study.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Reply to Comment on a??Photo-Controlled Reversible Microtubule Assembly Mediated by Paclitaxel-Modified Cyclodextrina??”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期