修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

A flexible surface-enhanced Raman substrates based on cellulose photonic crystal/Ag-nanoparticles composite

DOI:10.1016/j.matdes.2019.107601 期刊:Materials & Design 出版年份:2019 更新时间:2025-11-14 15:27:09
摘要: Surface-enhanced Raman scattering (SERS) significantly increases Raman scattering intensity. SERS usually uses rough-surface nano-metal materials such as gold, silver and copper as a substrate [1]. It has been widely used in surface science, analytical science and other fields [2-4]. According to the preparation method, SERS substrates can be divided into three categories: (1) solid phase substrates with fixed metal nanoparticles [5, 6]; (2) metal nanostructures prepared by nanoimprinting [7, 8]; (3) metal nanostructures prepared by template method [9-11]. Conventional SERS substrates, such as roughened surfaces of noble metals, are difficult to control and the SERS effect is unstable due to the random distribution of nanostructures. The microstructure of the nanometer regular pattern, which is processed by etching and electron beam deposition, is limited by the high cost of the instrument, the complicated production process, the difficulty to make large area and the subsequent modification of the surface. The SERS substrate prepared by a template of nanospheres array has a good controllability and reproducibility. By assembling nanospheres with different sizes to prepare the templates of different thicknesses, 2D metal films with different spacing can be obtained. The preparation of SERS substrate based on nanospheres array is simple and has low cost, easy regulation and high reproducibility. Protective agent and surfactant are not required in the preparation, meanwhile, the obtained substrate is relatively pure. PhCs are periodic structures which can be generated by a controllable self-assembly method of the spherical colloidal particles [12-15]. Light propagated inside PhCs follows Bragg's law of diffraction [16-19]. The characteristics of PhCs strongly depend on the spatial structure. Because of its cost-efficiency and easy preparation, PhC has attracted significant attentions in the application of optical sensors, optical switches [20, 21] and display devices [22-26]. The regular periodical structures can also be used as template to prepare other structural functional materials [27]. A lot of researches on the preparation and application of PhCs have been carried out in our recent work [28, 29]. Based on the special capture effect of PhC optical bandgap, the plasma effect of silver nanoparticles and the enrichment of cellulose matrix on analytes in organic solvents, we designed a combination of three properties for enhancing Raman scattering. Design concept is as follows: a PhC array which bandgap matches the incident light is used as a template, filled with a cellulose matrix that is easily degraded, and modified with silver nanoparticles. Based on the above design, a novel surface-enhanced Raman scattering substrate made by Ag-nanoparticles modified flexible cellulose photonic crystal film was firstly prepared. We synthesized an Ag-nanoparticles modified PhCs methylcellulose film (Ag-PHC-MCF) and carboxymethyl cellulose film (Ag-PHC-CMCF) SERS flexible substrates using the PhCs as templates. The innovative combination of metal nanoparticles and the ordered PhCs cellulose film (PHCCF) effectively avoided the aggregation of metal nanoparticles, as a result, the hot spots of the metal nanoparticles were distributed around the pores to ensure the uniform adsorption of the target analytes and uniform Raman signals on a large area. Through the excellent enrichment of cellulose film with pore structures, the targets in the organic solvent were captured on the cellulose film, so the Raman detection signals of the analyte were enhanced with the contact probability between the targets and the hot spots of metal nanoparticles increasing. At the same time, the light scattered on the PHCCF was enhanced significantly because of the trapping effect of PhC. Based on the original combination of the enrichment of porous methylcellulose, the plasmon resonance of Ag and the bandgap of photonic crystal, the composite film has a significant enhancement of the Raman signals. Simultaneously, due to its good degradability, it also has outstanding advantages in environmental protection. Meanwhile, it is easy to be carried and preserved because of its flexibility and light texture, which has great superiorities in transportation and storage.Therefore, it is of great significance in industrial pollutant detection or national defense safety monitoring.
作者: Dan Yan,Lili Qiu,Min Xue,Zihui Meng,Yunfeng Wang
AI智能分析
纠错
研究概述 实验方案 设备清单

To design and prepare a flexible surface-enhanced Raman scattering (SERS) substrate based on cellulose photonic crystal/Ag-nanoparticles composite for enhancing Raman signals and detecting analytes in organic solvents.

The Ag-nanoparticles modified cellulose photonic crystal film serves as an effective SERS substrate, enabling detection of p-methylthiophenol down to 10^-6 M with a linear relationship between concentration and signal intensity. It offers advantages in flexibility, degradability, and affinity for organic solvents, making it suitable for industrial and environmental monitoring applications.

The study may have limitations in the scalability of the substrate preparation, potential variability in Ag-nanoparticle distribution, and the specificity to certain analytes or solvents. Optimization could focus on improving reproducibility and expanding to other detection applications.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能模块化扫描电子显微镜,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“A flexible surface-enhanced Raman substrates based on cellulose photonic crystal/Ag-nanoparticles composite”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期