- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Super-resolution Mapping of Enhanced Emission by Collective Plasmonic Resonances
摘要: Plasmonic particle arrays have remarkable optical properties originating from their collective behavior, which results in resonances with narrow line widths and enhanced electric fields extending far into the surrounding medium. Such resonances can be exploited for applications in strong light?matter coupling, sensing, lasing, and light harvesting, nonlinear nanophotonics, solid-state lighting. However, as the lattice constants associated with plasmonic particle arrays are on the order of their resonance wavelengths, mapping the interaction between point dipoles and plasmonic particle arrays cannot be done with diffraction-limited methods. Here, we map the enhanced emission of single fluorescent molecules coupled to a plasmonic particle array with ~20 nm in-plane resolution by using stochastic super-resolution microscopy. We find that extended lattice resonances have minimal influence on the spontaneous decay rate of an emitter but instead can be exploited to enhance the outcoupling and directivity of the emission. Our results can guide the rational design of future optical devices based on plasmonic particle arrays.
关键词: light?matter interaction,nanophotonics,single molecule localization,collective resonances,plasmonics,super-resolution microscopy
更新于2025-11-25 10:30:42
-
Accidental contamination of substrates and polymer films by organic quantum emitters
摘要: We report the observation of ubiquitous contamination of dielectric substrates and polymethylmethacrylate matrices by organic molecules with optical activity in the visible spectral range. Contamination sites of individual solvent-related fluorophores in thin films of polymethylmethacrylate constitute fluorescence hotspots with quantum emission statistics and quantum yields approaching 30% at cryogenic temperatures. Our findings not only resolve prevalent puzzles in the assignment of spectral features to various nanoemitters on bare dielectric substrates or in polymer matrices, they also identify means for simple and cost-efficient realization of single-photon sources in the visible spectral range.
关键词: contamination of substrate and polymer matrix,organic fluorophores,single photon emitters,single molecule spectroscopy,Photoluminescence and fluorescence spectroscopy
更新于2025-11-25 10:30:42
-
Fluorophore Labeling, Nanodisc Reconstitution and Single-molecule Observation of a G Protein-coupled Receptor
摘要: Activation of G protein-coupled receptors (GPCRs) by agonist ligands is mediated by a transition from an inactive to active receptor conformation. We describe a novel single-molecule assay that monitors activation-linked conformational transitions in individual GPCR molecules in real-time. The receptor is site-specifically labeled with a Cy3 fluorescence probe at the end of trans-membrane helix 6 and reconstituted in phospholipid nanodiscs tethered to a microscope slide. Individual receptor molecules are then monitored over time by single-molecule total internal reflection fluorescence microscopy, revealing spontaneous transitions between inactive and active-like conformations. The assay provides information on the equilibrium distribution of inactive and active receptor conformations and the rate constants for conformational exchange. The experiments can be performed in the absence of ligands, revealing the spontaneous conformational transitions responsible for basal signaling activity, or in the presence of agonist or inverse agonist ligands, revealing how the ligands alter the dynamics of the receptor to either stimulate or repress signaling activity. The resulting mechanistic information is useful for the design of improved GPCR-targeting drugs. The single-molecule assay is described in the context of the β2 adrenergic receptor, but can be extended to a variety of GPCRs.
关键词: Phospholipid nanodiscs,G-protein coupled receptors,Conformational dynamics,β2 adrenergic receptor,Single-molecule fluorescence
更新于2025-11-21 11:24:58
-
A high-affinity fluorescence probe for copper(II) ions and its application in fluorescence lifetime correlation spectroscopy
摘要: Copper is one of the most important transition metals in many organisms where it catalyzes a manifold of different processes. As a result of copper’s redox activity, organisms have to avoid unbound ions, and a dysfunctional copper homeostasis may lead to multifarious pathological processes in cells with very severe ramifications for the affected organisms. In many neurodegenerative diseases, however, the exact role of copper ions is still not completely clarified. In this work, a high-affinity and highly selective copper probe molecule, based on the naturally occurring tetrapeptide DAHK is synthesized. The sensor (log KD = ? 12.8 ± 0.1) is tagged with a fluorescent BODIPY dye whose fluorescence lifetime distinctly decreases from 5.8 ns ± 0.2 ns to 0.4 ns ± 0.1 ns on binding to copper(II) cations. It is shown by using fluorescence lifetime correlation spectroscopy that the concentration of both probe and probe-copper complex can be simultaneously measured even at nanomolar concentration levels. This work presents a possible starting point for a new type of probe and method for future in vivo studies to further reveal the exact role of copper ions in organisms.
关键词: BODIPY,Single molecule detection,FLIM,Alzheimer,ATCUN motif,Parkinson,DAHK
更新于2025-11-21 11:24:58
-
Fabrication of Fe-doped SrTiO3 photocatalyst with enhanced dinitrogen photofixation performance
摘要: SrTiO3 as semiconducting photocatalyst has been extensively investigated due to its band edges meeting the thermodynamic requirements for water splitting, but a few attention has been concentrated on its application in the NH3 synthesis via N2 photofixation process. Herein, Fe-doped SrTiO3 (FexSr1-xTiO3) products (0 ≤ x ≤ 0.20) were synthesized via a hydrothermal process followed by calcination at 700oC. All FexSr1-xTiO3 products (0.03 ≤ x ≤ 0.20) deliver an enhanced N2 fixation ability, and FexSr1-xTiO3 (x = 0.10) achieves the best NH3 production activity of 30.1 μmol g-1 h-1, which is 3.2-hold higher than that of SrTiO3 alone. Once the x value is higher than 0.10, FexSr1-xTiO3 will transform into composites containing Fe-doped SrTiO3 and α-Fe2O3, which acts as charge recombination sites, thus causes a decreased N2 fixation activity. Further investigations demonstrate that the surface Fe3+-doped sites can not only chemisorb and activate N2 molecules, but also promote the interfacial electron transfer from Fe-doped SrTiO3 to N2 molecules, and thus significantly improve the N2 fixation ability. The present Fe-doped SrTiO3 products exhibit characteristic features such as stable and efficient N2 fixation ability as well as simultaneous realization of N2 reduction and H2O oxidation without co-catalyst, which are of significance in artificial photosynthesis with H2O as electron and proton sources.
关键词: Photocatalysis,Fe-doped SrTiO3,Dinitrogen photofixation,N2 molecule activation
更新于2025-11-21 11:01:37
-
Effect of concentration of DH6T on the performance of photoconductor fabricated using blends of P3HT and DH6T
摘要: The influence of small molecule (SM) α, ω-di-hexyl-sexithiophene (DH6T) concentration, in the blends of conjugated polymer (CP) poly (3-hexylthiophene) (P3HT) and DH6T, was investigated in terms of barrier potential reduction and improved photoresponse of the fabricated photoconductor using these blends. Barrier potential in Au/P3HT:DH6T/Au device structure, occurring at the interface of Au (top)/P3HT:DH6Twas estimated by Fowler Nordheim (FN) tunneling model-based analysis of I-V characteristics. The barrier potential of the fabricated device was observed to decrease upon addition of a small quantity of DH6T in comparison to the pristine polymer-based device. This reduction in barrier was attributed to the improved ordering and morphology of the polymer chains upon blending it with an SM. The variation in the ordering of the polymer chains was further confirmed with Photoluminescence spectroscopy, Absorption spectroscopy, and XRD data. Subsequently, it was also observed that only up to a definite SM concentration (25% in this study) ordering of polymer chains improved causing a reduction in barrier potential and subsequent improvement in the photoresponse of the fabricated devices. Finally, it was observed that the optimized blending of CP and SM could to be useful in reducing the effect of penetration of Au inside the CP matrix in the top contact configuration thereby resulting in the reduction of a barrier for carrier injection which is generally lower in the bottom contact configurations. These studies are critical from the point of view of the development of photoconductors and photosensitive top contact organic field effect transistors (OFETs).
关键词: Barrier potential,Small molecule,Photoconductor,Conjugated polymer
更新于2025-11-19 16:56:35
-
Studying the Absolute Intensities of the Absorption Lines of 2ν7 and ν2 Bands of the CH2 = CD2 Molecule in the Region 1450–1650 cm–1
摘要: As a result of analysis of the high-resolution Fourier spectrum, the absolute intensities of absorption lines of the CH2 = CD2 molecule are measured for the first time.
关键词: CH2 = CD2 molecule,ethylene,absorption line intensities
更新于2025-09-23 15:23:52
-
Redox-state dependent blinking of single photosystem I trimers at around liquid-nitrogen temperature
摘要: Efficient light harvesting in a photosynthetic antenna system is disturbed by a ragged and fluctuating energy landscape of the antenna pigments in response to the conformation dynamics of the protein. This situation is especially pronounced in Photosystem I (PSI) containing red shifted chlorophylls (red Chls) with the excitation energy much lower than the primary donor. The present study was conducted to clarify light-harvesting dynamics of PSI isolated from Synechocystis sp. PCC6803 by using single-molecule spectroscopy at liquid?nitrogen temperatures. Fluorescence emission at around 720 nm from the red Chls in single PSI trimers was monitored at 80–100 K. Intermittent variations in the emission intensities, so-called blinking, were frequently observed. Its time scale lay in several tens of seconds. The blinking amplitude depended on the redox state of the phylloquinone (A1). Electrochromic shifts of Chls induced by the negative charge on A1 were calculated based on the X-ray crystallographic structure. A Chl molecule, Chl-A839 (numbering according to PDB 5OY0), bound near A1 was found to have a large electrochromic shift. This Chl has strong exciton coupling with neighboring Chl (A838) whose site energy was predicted to be determined by interaction with an arginine residue (ArgF84) [Adolphs et al., 2010]. A possible scenario of the blinking was proposed. Conformational fluctuations of ArgF84 seesaw the excitation-energy of Chl-A838, which perturbs the branching ratio of excitation-energy between the red Chl and the cationic form of P700 as a quencher. The electrochromic shift of Chl-A839 enhances the effect of the conformation dynamics of ArgF84.
关键词: Cryogenic microscope,Phylloquinone,Fluorescence blinking,Site energy,Single-molecule spectroscopy,Electrochromic shift
更新于2025-09-23 15:23:52
-
Quasi-one-dimensional silicon nanostructures for gas molecule adsorption: a DFT investigation
摘要: Porous structures offer an enormous surface suitable for gas sensing, however, the effects of their quantum quasi-confinement on their molecular sensing capacities has been seldom studied. In this work the gas-sensing capability of silicon nanopores is investigated by comparing it to silicon nanowires using first principles calculations. In particular, the adsorption of toxic gas molecules CO, NO, SO2 and NO2 on both silicon nanopores and nanowires with the same cross sections was studied. Results show that sensing-related properties of silicon nanopores and nanowires are very similar, suggesting that surface effects are predominant over the confinement. However, there are certain cases where there are remarked differences between the nanowire and porous cases, for instance, CO-adsorbed nanoporous silicon shows a metallic band structure unlike its nanowire counterpart, which remains semiconducting, suggesting that quantum quasi-confinement may be playing an important role in this behaviour. These results are significant in the study of the quantum phenomena behind the adsorption of gas molecules on nanostructure’s surfaces, with possible applications in chemical detectors or catalysts.
关键词: Sensing,Chemical sensors,Silicon nanowires,Density functional theory,Molecule adsorption,Porous silicon
更新于2025-09-23 15:23:52
-
Nitrogen-embedded small-molecule semiconducting materials: Effect of chlorine atoms on their electrochemical, self-assembly, and carrier transport properties
摘要: We reported three novel nitrogen-embedded small molecules 4a, 4b, and 4c, which were synthesized from the condensation reactions of benzo[1,2-b:4,5-b']difuran-2,6(3H,7H)-dione with 1-(2-ethylhexyl)-1H-pyrrolo[2,3-b]pyridine-2,3-dione, 6-chloro-1-(2-ethylhexyl)-1H-pyrrolo[2,3-b]pyridine-2,3-dione, or 4,6-dichloro-1-(2-ethylhexyl)-1H-pyrrolo[2,3-b]pyridine-2,3-dione, respectively. Their optical, electrochemical properties, self-assembly behavior, and carrier transport properties were studied by a range of experimental and theoretical methods, and the effect of chlorine atoms were well discussed. Energy levels of the highest occupied molecular orbitals and the lowest unoccupied ones for these molecular materials locate at ?5.92~?6.02 and ?4.25~?4.37 eV, respectively. Bottom gate/bottom contact field-effect transistors based on 4a, 4b, and 4c exhibited n-channel transport characteristics with the highest electron mobility of 7.57 × 10?3 cm2 V?1 s?1. Thin film microstructure investigations revealed 4a and 4c perform lamellar molecular packing with random orientations to the OTS-treated SiO2 substrate, while 4b conducts a highly crystalline, edge-on, lamellar packing though large grain boundaries exist in its thin film.
关键词: Isoindigo derivatives,Chlorine atoms,Small-molecule semiconductors,Electron mobilities,Organic field-effect transistors
更新于2025-09-23 15:23:52