修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

32 条数据
?? 中文(中国)
  • Plasmonic Gold Nanovesicles for Biomedical Applications

    摘要: Gold nanoparticles (GNPs), with tunable optical properties, bioinertness, and surface multivalent effect, have been widely explored for biomedical applications. As one classical type of GNPs-based assemblies, plasmonic gold nanovesicles (GVs), with a hollow cavity, “solid skeleton” composed of GNPs cores and a “soft body” composed of functional polymers, have attracted considerable attention due to their tunable localized surface plasmon resonance, strong surface-enhanced Raman scattering properties, and high photothermal conversion efficiency. This review summarizes recent advances in biomedical applications for plasmonic GVs. Firstly, the synthesis methods of GVs are mainly including self-assembly and in situ gold growth methods. Secondly, the classification of GVs is described according to the morphology of GNPs cores. Thirdly, different biomedical applications of GVs are elaborated, including in vitro diagnosis, in vivo imaging, and in vivo therapy. Finally, the challenges and perspectives of GVs are discussed.

    关键词: cancer therapy,drug delivery,gold nanovesicles,biodetection,cancer imaging

    更新于2025-09-23 15:23:52

  • A self-illuminating nanoparticle for inflammation imaging and cancer therapy

    摘要: Nanoparticles have been extensively used for inflammation imaging and photodynamic therapy of cancer. However, the major translational barriers to most nanoparticle-based imaging and therapy applications are the limited depth of tissue penetration, inevitable requirement of external irradiation, and poor biocompatibility of the nanoparticles. To overcome these critical limitations, we synthesized a sensitive, specific, biodegradable luminescent nanoparticle that is self-assembled from an amphiphilic polymeric conjugate with a luminescent donor (luminol) and a fluorescent acceptor [chlorin e6 (Ce6)] for in vivo luminescence imaging and photodynamic therapy in deep tissues. Mechanistically, reactive oxygen species (ROS) and myeloperoxidase generated in inflammatory sites or the tumor microenvironment trigger bioluminescence resonance energy transfer and the production of singlet oxygen (1O2) from the nanoparticle, enabling in vivo imaging and cancer therapy, respectively. This self-illuminating nanoparticle shows an excellent in vivo imaging capability with suitable tissue penetration and resolution in diverse animal models of inflammation. It is also proven to be a selective, potent, and safe antitumor nanomedicine that specifically kills cancer cells via in situ 1O2 produced in the tumor microenvironment, which contains a high level of ROS.

    关键词: photodynamic therapy,cancer therapy,inflammation imaging,reactive oxygen species,myeloperoxidase,bioluminescence resonance energy transfer,nanoparticles

    更新于2025-09-23 15:22:29

  • Photothermal Ablation of Cancer Cells by Albumin-Modified Gold Nanorods and Activation of Dendritic Cells

    摘要: Nanoparticle-mediated photothermal therapy has been widely studied for cancer treatment. It is important to disclose how photothermally ablated tumor cells trigger immune responses. In this study, bovine serum albumin (BSA)-coated gold nanorods (BSA-coated AuNRs) were prepared and used for photothermal ablation of breast tumor cells. The BSA-coated AuNRs showed high photothermal conversion efficiency and good photothermal ablation effect towards tumor cells. The ablated tumor cells were co-cultured with immature dendritic cells (DCs) through a direct cell contacting model and diffusion model to confirm the stimulatory effects of cell–cell interaction and soluble factors released from ablated tumor cells. The results indicated that photothermally ablated tumor cells induced immune-stimulatory responses of DCs through both cell–cell interaction and soluble factors. The results should be useful for synergistic photothermal-immunotherapy of primary and metastatic cancer.

    关键词: gold nanorods,cellular uptake,photothermal ablation,cancer therapy,photothermal therapy,immune responses

    更新于2025-09-23 15:22:29

  • Near-Infrared Light Triggered Sulfur Dioxide Gas Therapy of Cancer

    摘要: The exploitation of gas therapy platforms holds great promise as a 'green' approach for selective cancer therapy, however, it is often associated with some challenges, such as uncontrolled or insufficient gas generation and unclear therapeutic mechanisms. In this work, a gas therapy approach based on near-infrared (NIR) light triggered sulfur dioxide (SO2) generation was developed, and the therapeutic mechanism as well as in vivo anti-tumor therapeutic efficacy was demonstrated. A SO2 prodrug-loaded rattle-structured upconversion@silica nanoparticles (RUCSNs) was constructed to enable high loading capacity without obvious leakage, and to convert NIR light into ultraviolet (UV) light so as to activate the prodrug for SO2 generation. In addition, SO2 prodrug-loaded RUCSNs showed high cell uptake, good biocompatibility, intracellular tracking ability, and high NIR light triggered cytotoxicity. Furthermore, the cytotoxic SO2 was found to induce cell apoptosis accompanied with the increase of intracellular reactive oxygen species (ROS) levels and the damage of nuclear DNA. Moreover, efficient inhibition of tumor growth was achieved, associated with significantly prolonged survival of mice. Such NIR light-triggered SO2 therapy may provide an effective strategy to stimulate further development of synergistic cancer therapy platforms.

    关键词: upconversion nanoparticles (UCNPs),gas therapy,cancer therapy,near-infrared (NIR),sulfur dioxide (SO2)

    更新于2025-09-23 15:22:29

  • Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer Therapy

    摘要: The concept of the “supramolecular photothermal effects” refers to the collection property and photothermal conversion efficiency resulting from the supramolecular assembly of molecular photothermal sensitizers. This review considers organic supramolecular photothermal materials assembled at the nanoscale via various molecular self-assembly strategies and associated with the organization of multiple noncovalent interactions. In these materials, the individual photosensitizer molecules are typically aggregated through self-assembly in a certain form that exhibits enhanced biostability, increased photothermal conversion efficiency with photoluminescence quenching, and improved photothermal therapeutic effects in comparison with those of the monomeric photosensitizer molecules. These supramolecular photothermal effects are controlled or influenced by intermolecular noncovalent interactions, especially the hydrophobic effects, which are distinct from the mechanisms of conventional sensitizer molecules and polymers and inorganic photothermal agents. A focus lies on how self-assembly strategies give rise to supramolecular photothermal effects, including polymer and protein fabrication, small molecule self-assembly, and the construction of donor–acceptor binary systems. Emphases are placed on the rational design of supramolecular photothermal nanomaterials, drug delivery, and in vivo photothermal therapeutic effects. Finally, the key challenges and promising prospects of these supramolecular photothermal nanomaterials in terms of both technical advances and clinical translation are discussed.

    关键词: photothermal therapy,nanomaterials,cancer therapy,supramolecular photothermal effects,self-assembly

    更新于2025-09-23 15:21:21

  • Dual-responsive doxorubicin-conjugated polymeric micelles with aggregation-induced emission active bioimaging and charge conversion for cancer therapy

    摘要: In recent years, intelligent polymeric micelles with multi-functions are in urgent demand for cancer diagnosis and therapy. Herein, pH and redox dual-responsive prodrug micelles with aggregation-induced emission (AIE) active cellular imaging and charge conversion have been prepared for combined chemotherapy and bioimaging based on a novel doxorubicin-conjugated amphiphilic PMPC-PAEMA-P (TPE-co-HD)-ss-P (TPE-co-HD)-PAEMA-PMPC copolymer. The doxorubicin is conjugated via a pH cleavable imine linkage and can be packed in the hydrophobic core along with the glutathione (GSH)-sensitive disulfide bond. The DOX-conjugated inner core is sealed with a pH-responsive PAEMA as the “gate”, which would rapidly open in the acidic condition, following the drug release and charge conversion-mediated acceleration of endocytosis. After an efficient internalization, the disulfide bond can be cleaved by the high concentration of GSH causing the further accelerated drug release. Meanwhile, intracellular drug delivery can be traced due to the AIE behavior of micelles. Moreover, great tumor inhibition in vitro and in vivo has been demonstrated for these DOX-conjugated micelles. This smart prodrug micelle system would be a desirable drug carrier for cancer therapy and bioimaging.

    关键词: polymeric micelles,charge conversion,aggregation-induced emission,dual-responsive,cancer therapy

    更新于2025-09-23 15:21:21

  • Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent

    摘要: Superparamagnetic iron oxide nanoparticles (SPIONs) and core-shell type nanoparticles, consisting of SPIONs coated with mesoporous silica and/or lipid, were synthesized and tested for their potential theranostic applications in drug delivery, magnetic hyperthermia and as a contrast agent. Transmission Electron Microscopy (TEM) confirmed the size of bare and coated SPIONs was in the range of 5-20 nm and 100-200 nm respectively. The superparamagnetic nature of all the prepared nanomaterials as indicated by Vibrating Sample Magnetometry (VSM) and their heating properties under an AC field confirm their potential for hyperthermia applications. Scanning Column Magnetometry (SCM) data showed that extrusion of bare-SPION (b-SPION) dispersions through a 100 nm polycarbonate membrane significantly improved the dispersion stability of the sample. No sedimentation was apparent after 18 hours compared to a pre-extrusion estimate of 43% settled at the bottom of the tube over the same time. Lipid coating also enhanced dispersion stability. Transversal relaxation time (T2) measurements for the nanoparticles, using a bench-top relaxometer, displayed a significantly lower value of 46 ms, with a narrow relaxation time distribution, for lipid silica coated SPIONs (Lip-SiSPIONs) as compared to that of 1316 ms for the b-SPIONs. Entrapment efficiency of the anticancer drug, Doxorubicin (DOX) for Lip-SPIONs was observed to be 35% which increased to 58% for Lip-SiSPIONs. Moreover, initial in-vitro cytotoxicity studies against human breast adenocarcinoma, MCF-7 cells showed that % cell viability increased from 57% for bSPIONs to 82% for Lip-SPIONs and to 87% for Lip-SiSPIONs. This suggests that silica and lipid coatings improve the biocompatibility of bSPIONs significantly and enhance the suitability of these particles as drug carriers. Hence, the magnetic nanomaterials prepared in this work have potential theranostic properties as a drug carrier for hyperthermia cancer therapy and also offer enhancement of contrast agent efficacy and a route to a significant increase in dispersion stability.

    关键词: magnetoliposomes,drug carrier,cancer therapy,colloidal stability,hyperthermia,theranostic,Superparamagnetic iron oxide nanoparticles

    更新于2025-09-23 15:21:01

  • Polydopamine Coated PB-MnO <sub/>2</sub> Nanoparticles as an Oxygen Generator Nanosystem for Imaging-Guided Single-NIR-Laser Triggered Synergistic Photodynamic/Photothermal Therapy

    摘要: Exploring a combined phototherapeutic strategy to overcome the limitations of a single mode therapy and inducing high anticancer efficiency is highly promising for precision cancer nanomedicine. However, a single-wavelength laser activates dual photothermal/photodynamic therapy (PTT/PDT) treatment is still a formidable challenge. Herein, we strategically design and fabricate a multifunctional theranostic nanosystem based on chlorin e6-functionalized polydopamine (PDA) coated prussian blue/manganese dioxide nanoparticles (PB-MnO2@PDA-Ce6 NPs). the obtained PB-MnO2@PDA NPs not only offer an effective delivery system for Ce6 but also provide strong optical absorption in the near-infrared range, endowing high antitumor efficacy of PTT. More importantly, the as-prepared PB-MnO2@PDA-Ce6 nanoagents exhibit an effective oxygen generation, superior reactive oxygen species (ROS), and outstanding photothermal conversion ability to greatly improve PTT and PDT treatments. As a result, both in vitro and in vivo treatments guided by MR imaging on liver cancer cells reveal the complete cell/tumor eradication under a single wavelength of 660 nm laser irradiation, implying the simultaneous synergistic PDT/PTT effects triggered by PB-MnO2@PDA-Ce6 nanoplatform, which are much higher than individual treatment. Taken together, our phototherapeutic nanoagents exhibit an excellent therapeutic performance, which may act as a nanoplatform to find safe and clinically translatable routes to accelerate cancer therapeutics.

    关键词: photodynamic therapy,nanomedicine,prussian blue,photothermal therapy,MRI,cancer therapy,polydopamine,chlorin e6,manganese dioxide

    更新于2025-09-23 15:19:57

  • Fluorescent hollow mesoporous carbon spheres for drug loading and tumor treatment through 980-nm laser and microwave co-irradiation

    摘要: Hollow mesoporous particles for drug delivery and cancer therapy have attracted significant attention over recent decades. Here, we develop a simple and highly efficient strategy for preparing fluorescent hollow mesoporous carbon spheres (HMCSs). Compared with typical carbon materials such as fullerene C60, carbon nanotubes, reduced graphene oxide, and carbon nanohorns; HMCSs showed fewer effects on cell cycle distribution and lower toxicity to cells. Ten different drugs were incorporated into the HMCSs, and the maximum loading efficiency reached 42.79 ± 2.7%. Importantly, microwaves were found to improve the photothermal effect generated by HMCSs when combined with 980-nm laser irradiation. The cell killing and tumor growth inhibition efficiencies of HMCSs and drug-loaded HMCSs under co-irradiation with laser and microwaves were significantly improved compared with those under laser irradiation alone. After local administration HMCSs were only distributed in tissue at the injection site. HMCSs showed almost no toxicity in mice after local injection and could be completely removed from the injection site.

    关键词: Hollow mesoporous carbon spheres,Low cytotoxicity,Fluorescent carbon dots,980-Nm laser and microwave co-irradiation,Improved cancer therapy

    更新于2025-09-23 15:19:57

  • Facile synthesis of novel carbon-dots/hemin nanoplatforms for synergistic photo-thermal and photo-dynamic therapies

    摘要: Due to the traditional therapies of cancer inducing huge pains to patients, the non-invasive photo-guided therapies are attracting massive attentions of researchers. Herein, the intelligent-designed carbon-dots/hemin nanoplatforms (HCDs NPs) were developed, owning high-authority photo-therapy for cancer. The fluorescence resonance energy transfer (FRET) effect enhanced the photo-thermal ability of HCDs NPs, endowing the synthesized nanoplatforms with photo-dynamic property simultaneously. Therefore, the obtained HCDs NPs could achieve synergetic photo-thermal and photo-dynamic therapies for cancer. Basing on the experimental results, the prepared HCDs NPs could induce the temperature enhancement high to ca 26 ℃ under laser irradiation, also with the outstanding photo-dynamic efficacy. More than 90 % of cancer cells die after 10 min laser treatment. Thus, the dual-modal photo-therapeutic HCDs NPs are promising and excellent nanomaterials for potential application in synergistic cancer therapy.

    关键词: Dual-modal nanoplatform,Synergistic cancer therapy,FRET effect,Enhanced photo-thermal therapy,Photo-dynamic therapy

    更新于2025-09-19 17:15:36