- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
The Influence of Ceramic Far-Infrared Ray (cFIR) Irradiation on Water Hydrogen Bonding and its Related Chemo-physical Properties
摘要: The property of water is highly related to the earth's environment and climate change. The fundamental dynamical process of water is include formation and breaking of hydrogen bonds. This dynamic process, so far, is still poorly understood. We investigated weakening of the hydrogen bonds of water after ceramic Far-Infrared Ray (cFIR) irradiation and the resulting effects on physical and chemical properties of water. In this study, the Fourier transform infrared spectroscopy (FT-IR) was used to explore hydrogen bonding change of cFIR-irradiated water; in addition, capillary viscometers, Gas Chromatographs (GC), Differential Scanning Calorimetry (DSC), contact angles, Franz cells, High-Performance Liquid Chromatography (HPLC), and capillary electrophoresis analysis were used to evaluate its physical characteristics, such as viscosity, volatility, temperatures of water crystallization, surface tension, diffusion, hydrogen peroxide dissociation, solubility of solid particles, and changes in pH of acetic acid. The cFIR treated water decreased in viscosity and surface tension (contact angles), but increased in the solubility of solid particles, hydrogen peroxide dissociation, temperatures of water crystallization, and acidity of acetic acid. The weakening of water hydrogen bonds caused by cFIR irradiation is correspondent with our previous medical-biological studies on cFIR.
关键词: Hydrogen bonds,Fourier transform infrared spectroscopy (FT-IR),Contact angle,Ceramic far infrared ray (cFIR),Irradiation water,Solubility,Volatility
更新于2025-09-23 15:23:52
-
Roles of alloying elements in wetting of SiC by Al
摘要: Wetting of SiC by Al alloys is a key issue in the preparation of SiC-reinforced Al matrix composites. The wettability could be improved by alloying of Al, yet controversial results widely exist in the literature. We investigated the effects of four important alloying elements (Si, Cu, Ti and Mg) and their concentrations on the wettability in the Al/SiC system using a dispensed sessile-drop method. The results demonstrate that Si could weaken or even inhibit the formation of Al4C3 and substantially improve the wettability via an adsorption effect; Cu slightly deteriorates the wettability, but alleviates the formation of Al4C3 by decreasing the activity of Al; Ti strongly adsorbs at the solid?liquid interface, forming TiCx instead of Al4C3, and thus significantly improves the wettability; Mg may also favor the wettability due to its help in the disruption of the oxide film covering the Al surface via evaporation and its strong affinity for the silica film on the SiC surface; but for a clean Al/SiC system, the effect of Mg is essentially limited. In addition, the evaporation of Mg always leads to a reduction in the drop volume, which causes a decrease in the apparent contact angle, but this effect is usually neglected.
关键词: Contact angle,Interface,Wetting
更新于2025-09-23 15:23:52
-
Effect of solvents on the self-assembly of long chain alkylphosphonic acids on indium tin oxide surface - In situ studies on the adsorption kinetics and electron transfer process
摘要: The spontaneous self-assembly process of phosphonic acids (PAs) onto indium tin oxide (ITO) surface has been studied in this work. We have carried out in situ adsorption kinetics studies of phosphonic acids in ethanol as a solvent using electrochemical impedance spectroscopy (EIS). Further, the effect of different solvents like ethanol, water, toluene and hexane on the structural integrity of the alkylphosphonic acid (CH3 (CH2)n PO3H2, n = 15,17) thin films on ITO surface has been investigated by using [Fe(CN)6]3-/4- as a redox probe. From the study of formation kinetics, it is concluded that molecular self-assembly process follows two adsorption steps, a fast first step followed by a slower second step. The results of cyclic voltammetric (CV) and impedance measurements show that phosphonic acids form a highly impermeable surface film on ITO when polar solvents like ethanol and water are used.
关键词: self assembly,Adsorption Kinetics,microelectrode array,Contact Angle,Capacitance,ITO,Phosphonic acid
更新于2025-09-23 15:23:52
-
Electrowetting on 2D dielectrics: a quantum molecular dynamics investigation
摘要: Electrowetting on dielectrics (EWOD) is widely used to manipulate the spreading of a conductive liquid on a dielectric surface by applying an electric field. 2D hydrophobic dielectrics are promising candidates for EWOD applications. In this study, extensive quantum molecular dynamics (MD) simulations are performed to investigate the electrowetting behavior of salty water on hexagonal boron nitride (h-BN) monolayer. The proximal adsorption of salt ions and the associated realignment of the dipole moments of interfacial water with the applied electric field are found to be the physical origin of the electrowetting behavior. At low salt concentration and low electric fields, the proximal adsorption and the realignment follow the applied electric field, and the cosine of the water contact angle (WCA) follows a quadratic dependence on the applied electric field. At high salt concentration and high electric fields, the proximal adsorption saturates, which restricts further realignment and causes a saturation of the WCA. This case study provides physical insights into the much debated mechanism that underlies the contact angle saturation (CAS) found in macroscopic electrowetting phenomena and also provides an avenue for further studies of electrowetting at the atomic scale.
关键词: hexagonal boron nitride monolayer,contact angle saturation,electrowetting on dielectrics,first-principles
更新于2025-09-23 15:23:52
-
Contact Angle Relaxation and Long-lasting Hydrophilicity of Sputtered Anatase TiO <sub/>2</sub> Thin Films by Novel Quantitative XPS Analysis
摘要: The contact angle relaxation of TiO2 surfaces is an important problem that must be understood, particularly for long-lasting hydrophilicity under dark conditions. The relaxation of sputtered anatase TiO2 thin films over a long time (~22 days) in an atmospheric environment was observed using quantitative XPS analysis. A new peak was identified as H2O within a donor-acceptor complex at ~2.57 eV above the lattice oxygen peak. This donor?acceptor complex turns out to be a key factor for long lasting hydrophilicity, and our model is presented. Adventitious carbon contamination was not the main cause of the contact angle relaxation. Instead, samples with lower amounts of donor?acceptor complexes (IDAC/Ibulk ≤ ~5%) underwent contact angle relaxation over time, and samples with a high density of donor?acceptor complexes (IDAC/Ibulk ≥ ~10%) showed good hydrophilicity (contact angle ≤ 20°) over 22 days. Larger amounts of basic Ti?OH relative to acidic OHbridge (ITi?OH/Ibridge ≥ 1) resulted in greater amounts of donor?acceptor complexes (IDAC/Ibulk ≥ ~10%). Thus, basic Ti?OH groups interact with H2O by forming a strong electrostatic donor?acceptor complex, leading to long-lasting hydrophilicity. Indeed, TiO2 was transformed to show long lasting hydrophilicity by high-density oxygen plasma treatment by forming sufficient Ti?OH groups and H2O molecules in the donor?acceptor complexes. Contact angle relaxation is closely related to the interactions between water molecules and the TiO2 surface in the dark. It is suggested that the relaxation depends on the number of electrostatic donor?acceptor complexes. This study provides new insight by linking theoretical studies with the experimental contact angle at the TiO2 surface in an ambient environment and is the first study that provides the presented relaxation mechanism.
关键词: Hydrophilicity,Sputtering,Plasma treatment,Contact angle relaxation,XPS analysis,Donor-acceptor complex,TiO2 thin films
更新于2025-09-23 15:22:29
-
Wettability Control of Copper Surface Using Picosecond Laser for Enhancing Condensation Heat Transfer
摘要: One of the most important and widely visualized process taking place in nature is condensation. Superhydrophobic surfaces, which facilitates dropwise condensation has been the principal area of research in the last decade or so. Fabrication of superhydrophobic surface can be achieved by either surface modification using mechanical process, surface treatment like coating or by the combination of both. But, the major drawback of coating is its durability and vulnerability. So, in this work we have fabricated a robust surface by means of picosecond laser machining. Apart from being a simple process, this method has an advantage of cutting down the surface fabrication time by several hours as compared to other methods like one-step immersion, electro-deposition, top-down fabrication method, etc. In our work three different work specimens irradiated with different laser power were studied for its surface morphologies by scanning electron microscope (SEM) images and its wettability was measured using contact angle meter. It is found that the wettability of surface changes with different laser power and hence it is possible to control the wettability by adjusting the laser parameters. Condensation experiment was carried out on these different surfaces and its performance was compared with plain surface.
关键词: Wettability control,micro grooves,Condensation heat transfer,Contact angle,Picosecond laser
更新于2025-09-23 15:21:01
-
Rapid laser fabrication of long-term stable superhydrophilic aluminum surface
摘要: A simple method for fabricating stable superhydrophilic aluminum surface is reported in this paper. Controllable micro-nanostructures were prepared on the surface of aluminum plate by nanosecond laser and then soaked in boiled 45% ethanol solution for 2 h as the post-treatment. It is demonstrated that the laser-ablated aluminum plate surface is hydrophilic and then switch to superhydrophilic after a 45% ethanol solution post-treatment. The treated superhydrophilic structure has good hydrophilic stability in a certain period of time. The mechanism of superhydrophilic behavior of aluminum surface treated with laser and ethanol solution was discussed. A new method for preparing stable superhydrophilic surface is proposed in this paper, which is of great significance for the preparation of superhydrophilic surface and the application of superhydrophilic surface in industrial production.
关键词: Superhydrophilic surface,Ethanol solution,Nanosecond laser,Aluminum,Contact angle
更新于2025-09-23 15:21:01
-
Effects of weathering on the performance of self-cleaning photocatalytic paints
摘要: The use of photocatalytic products for the surface coating of buildings is spreading more and more, because of the reduction of atmospheric pollutants and the colour maintenance of the paints over time with reduction of the maintenance costs and the improvement of the aesthetic appearance. The study reports the evaluation of the effects of the atmospheric conditions on three commercial photocatalytic paints containing TiO2. In particular tests were carried out by using samples subjected to accelerated aging inside a climate chamber and naturally aged by exposure for two years to the external environment of the city of Palermo (representative of a coastal environment of the Mediterranean basin). The samples were characterized by Scanning Electron Microscopy (SEM) and Optical Microscopy to evaluate the surface morphology, and by UV–Vis Spectrophotometry to appreciate the colours changes as a result of aging. X-ray diffraction (XRD), moreover, was used to identify the TiO2 phase and static contact angles were determined to evaluate the surface hydrophilicity. The photocatalytic activity was evaluated under UV and solar light irradiation by degrading 2-propanol, used as a probe molecule and analysed by gas chromatography (GC), which is representative of volatile organic compounds (VOC's). The results indicated colour conservation, increase of the surface hydrophilicity and maintenance of the photocatalytic performances.
关键词: Static contact angle,Titanium dioxide,Photocatalytic paints,VOC'S degradation,Weathering effects
更新于2025-09-23 15:21:01
-
Spreading of biologically relevant liquids over the laser textured surfaces
摘要: Hypothesis: The distribution of biological objects upon the spreading of biologically relevant dispersions over laser textured surfaces is affected by the dispersion composition and substrate chemistry and roughness. Experiments: To examine the role of the substrate texture in biologically relevant liquid spreading, the dynamic behavior of droplets of water and dispersions of bacterial cells and viruses and dynamic behavior of droplet/air surface tension were addressed. A new procedure to simultaneously distinguish three different spreading fronts was developed. Findings: The study of spreading of water and the biologically relevant liquids over the laser textured substrate indicate the development of three spreading fronts associated with the movement of bulk droplet base, the flow along the microchannels, and the nanotexture impregnation. The anisotropy of spreading for all types of liquid fronts was found. Despite the expected difference in the rheological behavior of water and the biologically relevant liquids, the spreading of all tested liquids was successfully described by power-law fits. The droplet base spreading for all tested liquids followed the Tanner law. The advancing of water and dispersions in the microchannels along both fast and slow axes was described by Washburn type behavior. The impregnation of the nanotexture by water and biologically relevant liquids demonstrated universality in power fit description with an exponent n = 0.23.
关键词: Biologically relevant liquid,Spreading,Wetting,Dynamic wetting,E. coli,Image processing,Roughness,Contact angle,Textured surface,Bacteriophage
更新于2025-09-23 15:19:57
-
Surface modification of polyamide 12 angioplasty balloons by photochemical reaction with an aromatic azide
摘要: Polyamide 12 (PA12) is used in a variety of applications when low moisture absorption, good dimensional stability, and toughness are required. Polyamide 12 is one of the polymers most frequently employed to fabricate angioplasty balloon catheters; however, its high hydrophobicity and chemical inertness require the application of coatings to make its surface more hydrophilic and biocompatible. In this work, an alternative method, based on the photochemical reaction of PA12 with a hydrophilic aromatic azide, was developed. Static and dynamic contact angle measurements evidenced that the surface modification process was able to improve PA12 wettability and that the effects were retained even after 12 months from surface treatment. Polyamide 12 modification resulted in an increase of its surface free energy, as evaluated by the van Oss, Good, and Chaudhury method. X‐ray photoelectron spectroscopy confirmed the presence of the aromatic azide on PA12 surface. Finally, compliance tests showed that the modification process did not reduce the mechanical performance of balloons.
关键词: contact angle,polyamide 12,angioplasty balloon catheter,surface free energy,surface modification
更新于2025-09-23 15:19:57