修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

392 条数据
?? 中文(中国)
  • A statistical learning method for image-based monitoring of the plume signature in laser powder bed fusion

    摘要: The industrial breakthrough of metal additive manufacturing processes mainly involves highly regulated sectors, e.g., aerospace and healthcare, where both part and process qualification are of paramount importance. Because of this, there is an increasing interest for in-situ monitoring tools able to detect process defects and unstable states since their onset stage during the process itself. In-situ measured quantities can be regarded as “signatures” of the process behaviour and proxies of the final part quality. This study relies on the idea that the by-products of laser powder bed fusion (LPBF) can be used as process signatures to design and implement statistical monitoring methods. In particular, this paper proposes a methodology to monitor the LPBF process via in-situ infrared (IR) video imaging of the plume formed by material evaporation and heating of the surrounding gas. The aspect of the plume naturally changes from one frame to another following the natural dynamics of the process: this yields a multimodal pattern of the plume descriptors that limits the effectiveness of traditional statistical monitoring techniques. To cope with this, a nonparametric control charting scheme is proposed, called K-chart, which allows adapting the alarm threshold to the dynamically varying patterns of the monitored data. A real case study in LPBF of zinc powder is presented to demonstrate the capability of detecting the onset of unstable conditions in the presence of a material that, despite being particularly interesting for biomedical applications, imposes quality challenges in LPBF because of its low melting and boiling points. A comparison analysis is presented to highlight the benefits provided by the proposed approach against competitor methods.

    关键词: Process plume,Metal additive manufacturing,Laser powder bed fusion,Infrared imaging,In-situ monitoring,Zinc

    更新于2025-11-28 14:24:20

  • Development of an Intra-Layer Adaptive Toolpath Generation Control Procedure in the Laser Metal Wire Deposition Process

    摘要: Recently developed concentric laser metal wire deposition (LMWD) heads allow metal addition processes which are independent of the deposition direction, thus enabling complex paths to be generated. The sensitivity of the process to height deviations has experimentally been observed to be greater with this type of head than with powder ones, therefore requiring more precise and local process control algorithms to be implemented. This work developed a methodology for measuring the part, layer by layer, using a 3D scanner based on structured laser light. Height corrections were applied to the mean and intra-layer height deviations by recalculating the deposition trajectories of the next layer to be deposited. Local height deviations were adjusted by varying the scanning speed, thus increasing the feed rate in the lower areas and decreasing it in the higher ones. Defects generated in the purpose, with height differences within the layer, were successfully corrected. A flat layer was re-established through the application of the control strategy. The internal integrity of the parts due to the scanning speed variation was analyzed, resulting in fully dense parts. The structured light measurement and height correction systems are found to be an affordable and time-efficient solution that can be integrated into an LMWD environment, thereby improving the process robustness.

    关键词: cladding,coaxial wire feed,metal wire,additive manufacturing,monitoring,laser deposition,structured light scanning,height control

    更新于2025-11-28 14:24:20

  • In-situ Measurements and Thermo-mechanical Simulation of Ti-6Al-4V Laser Solid Forming Processes

    摘要: Residual stresses and distortions are two technical obstacles for popularizing the Additive Manufacturing (AM) technology. The evolution of the stresses in AM components during the thermal cycles of the metal depositing process is not yet clear, and more accurate in-situ measurements are necessary to calibrate and validate the numerical tools developed for its simulation. In this work a fully coupled thermo-mechanical analysis to simulate the Laser Solid Forming (LSF) process is carried out. At the same time, an exhaustive experimental campaign is launched to measure the temperature evolution at different locations, as well as the distortions and both the stress and strain fields. The thermal and mechanical responses of single-wall coupons under different process parameters are recorded and compared with the numerical models. Good agreement between the numerical results and the experimental measurements is obtained. Sensitivity analysis demonstrates that the AM process is significantly affected by the laser power and the feeding rate, while poorly influenced by the scanning speed.

    关键词: Numerical simulation,Laser Solid Forming (LSF),Thermo-mechanical analysis,Additive manufacturing (AM),In-situ measurements of residual stresses

    更新于2025-11-28 14:24:20

  • Inconel625/316L functionally graded material using spectral diagnostics during laser additive manufacturing process

    摘要: In this paper, the composition of Inconel625/316L functionally graded material during the additive manufacturing process was monitored on-line by laser-induced plasma optical emission spectroscopy. Several spectral lines are used to establish the quantitative relationship between relative intensity, relative intensity ratio, plasma temperature, and functional gradient material composition variation. It is shown that the change between relative strength and compositional content is similar to actual expectations. But, the relationship between the relative intensity with Inconel625 content is nonlinear. Cr-I/Ni-I relative intensity ratios almost linearly decrease with increasing Inconel625 content. The linear correlation coe?cient of the best ?tted curve was 0.943, and the maximum percentage error was 7.5%. The plasma temperature was obtained by the Boltzmann plot using ?ve neutral chrome lines between 330 and 380 nm. Plasma temperature almost linearly increases with increasing Inconel625 content in a range. The linear correlation coe?cient of the plasma temperature ?tted straight line was 0.93, and the maximum percentage error was 2.7%. The feasibility of composition monitoring of gradient materials by spectral information during the additive manufacturing process was veri?ed.

    关键词: plasma temperature,spectral diagnosis,laser additive manufacturing,composition monitoring

    更新于2025-11-28 14:24:20

  • Hyperspectral and thermal temperature estimation during laser cladding

    摘要: Although there is no doubt about the tremendous industrial potential of metal additive manufacturing techniques such as laser metal deposition, the technology still has some intrinsic quality challenges to overcome before reaching its industrial maturity. Noncontact in situ monitoring of the temperature evolution of the workpiece could provide the necessary information to implement an automated closed-loop process control system and optimize the manufacturing process, providing a robust solution to these issues. However, measuring absolute temperatures is not self-evident: wavelength-dependent emissivity values vary between solid, liquid, and mushy metallic regions, requiring spectral information and dedicated postprocessing to relate the amount of emitted infrared radiation to the material temperature. This paper compares the temperature estimation results obtained from a visible and near-infrared hyperspectral line camera and a conventional short-wave infrared (SWIR) thermal camera during the laser melting and cladding of a 316L steel sample. Both methods show agreeing results for the temperature distribution inside the melt pool, with the SWIR camera extending the temperature measurements beyond the melt pool boundaries into the solid region.

    关键词: temperature estimation,laser cladding,hyperspectral imaging,additive manufacturing,thermal monitoring

    更新于2025-11-28 14:24:20

  • Influence of Technological Parameters of Direct Laser Deposition Process on the Structure and Properties of Deposited Products from Alloy Ti-6Al-4V

    摘要: The technology of direct laser deposition is the most promising for using in various industries. One of the most interesting areas for using this technology is an aviation industry. Due to their unique properties, titanium alloys are widely used in the aircraft industry for gas turbine engine components. In this paper, the effect of DLD process parameters on defect formation and structure is considered. The influence of energy density on the mechanical properties of parts is determined.

    关键词: Direct Laser Deposition,additive manufacturing,mechanical properties,Titanium alloys

    更新于2025-11-28 14:24:20

  • Effect of build geometry and orientation on microstructure and properties of additively manufactured 316L stainless steel by laser metal deposition

    摘要: The effect of build geometry and orientation on the microstructure and mechanical properties of additively manufactured AISI 316L stainless steel was studied. For this an integrated laser metal deposition system was used to build two test blocks, Block 1 and Block 2, such that Block 1 had its longest dimension parallel to the build direction while Block 2 had its longest dimension perpendicular to the build direction. Samples with different orientations with respect to the build direction were extracted from the two blocks and characterized in detail. Block 1 was found to have a coarser defect-free microstructure, while Block 2 had a finer microstructure with extensive inter-track/layer defects. The yield strengths and tensile strengths of Block 2 samples were higher than Block 1 samples, but their strain hardening capacities and ductility values were lower. These differences in microstructure and mechanical properties were shown to be an outcome of the different build rates and consequent thermal histories of the two blocks. In order to explain the variation of yield strength with sample orientation, an alternate measure for grain size called “effective grain size” was introduced, which revealed the effect of grain orientation on the mean free path for dislocation motion and hence yield/flow stress. Variation of yield strength with the effective grain size was found to follow Hall-Petch behaviour.

    关键词: Anisotropy,Additive Manufacturing,Grain Size,Tensile Behaviour,Orientation

    更新于2025-11-28 14:24:20

  • Laser additive manufacturing of Zn-2Al part for bone repair: Formability, microstructure and properties

    摘要: Zinc (Zn) alloys are promising bone repair materials due to their inherent degradability, favorable mechanical property and biocompatibility. In this investigation, laser powder bed fusion (LPBF) known as a representative additive manufacturing technique was applied to fabricate Zn-2Al (wt.%) part for bone repair application. A low energy density (Ev) led to the formation of pores and resultant insufficient densification rate due to the high liquid viscosity within the molten pool. In contrast, a high Ev caused the evaporation of Zn powder and resultant failure of LPBF. With Ev increasing, the obtained grains and the precipitated lamellar eutectic structure contained η-Zn and α-Al phase became coarsened, which could be attributed to the enhanced heat accumulation and consequently decreased cooling rate. At optimized Ev of 114.28 J/mm3, fully dense Zn-2Al part with a densification rate of 98.3±1.4% was achieved, which exhibited an optimal hardness of 64.5±1.8 Hv, tensile strength of 192.2±5.4 MPa and a moderate corrosion rate of 0.14 mm/year. In addition, in vitro cell tests confirmed its good biocompability. This study indicated that LPBF processed Zn-2Al part was a potential material for bone repair.

    关键词: Zn alloys,laser additive manufacturing,mechanical properties,degradation rate,biocompability

    更新于2025-11-21 11:18:25

  • Grain size evolution under different cooling rate in laser additive manufacturing of superalloy

    摘要: The processing parameters in laser additive manufacturing have a crucial impact on solidification microstructure especially grain size, thus influencing the properties of the final products. In this paper, experiments were conducted to investigate the effects of processing parameters including scanning speed, laser power and powder feeding rate on grain size of the solidified track during laser metal deposition. A three-dimensional model considering heat transfer, phase change and Marangoni convection flow had also been developed to simulate the solidification parameters especially cooling rate (G × R) to illustrate the underlying mechanisms. The experimental and simulated results indicated that cooling rate increased and grain size decreased from 8.7 μm to 4.7 μm with the increase of scanning speed from 2 mm/s to 10 mm/s. Contrarily, cooling rate decreased and grain size increased with the increase of laser power and powder feeding rate. The numerical and experimental results provide the additive manufacturing process with the potential of microstructure control and performance optimization.

    关键词: Grain size,Laser additive manufacturing,Superalloy,Solidification,Cooling rate

    更新于2025-11-21 11:18:25

  • Development of a high strength Al–Zn–Si–Mg–Cu alloy for selective laser melting

    摘要: Despite additive manufacturing processes are already widely used in several industrial applications, there are few materials that are specifically designed and optimized for these technologies. Currently, only few Al alloys are available on the market and employed for 3D printing of structural parts. In particular, SieMg bearing alloys are the most common Al alloys for additive manufacturing, featuring high processability but moderate mechanical properties. By this work, we studied the effect of Si addition on the hot cracking susceptibility of a high strength AleZneMgeCu alloy. A preliminary activity has been carried out by blending AleZneMgeCu and AleSieMg powders and analysing their microstructure and properties achieved after selective laser melting. Eventually a new AleZneSieMgeCu alloy has been designed, produced as powder alloy by gas atomization and tested. The microstructure and phase transformations of the new alloy has been investigated by synchrotron X-ray diffraction, differential scanning calorimetry and microscope analysis. The AleZneSieMgeCu alloy processed by selective laser melting featured a relative density of 99.8%, no hot cracks were noticed within the investigated microstructures. The ability of the new alloy to respond to aging starting from both as built and solution annealed conditions has been also evaluated. A good response to direct aging (directly from as built condition) was demonstrated, featuring yield strength and ultimate tensile strength of 402 and 449 MPa, respectively, and hardness of 174 HV after optimized aging at 165 (cid:1)C for 2 h.

    关键词: Differential scanning calorimetry,Metal additive manufacturing,Mechanical properties,Synchrotron X-ray diffraction,High strength Al alloy

    更新于2025-11-21 11:18:25