- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Single-femtosecond-laser-pulse interaction with mica
摘要: Ultrafast, femtosecond laser pulse interaction with dielectric materials has shown them to have significantly higher laser fluence threshold requirements, as compared to metals and semiconductors, for laser material modification such as laser ablation. The interaction between femtosecond laser pulses and a dielectric, at a wavelength with negligible linear absorption, has usually been found to be weak, and multiple pulse irradiation is therefore typically used to observe quantifiable effects. In this study, the dielectric is the crystalline layered natural mineral muscovite, a mica with formula KAl2(Si3Al) O10(OH)2. A single ~150 fs laser pulse, ~800 nm wavelength, ~6 μm spotsize, is found to lead to a systematic range of laser modification topologies, as a function of fluence of the single laser pulse, including bulk removal. The fs laser pulse/material interaction is greater than expected for a standard dielectric at a given fluence. Optical surface profiling and FESEM are used to characterise the topologies. Contrasting the results of the two techniques supports the use of optical surface profiling to characterise the material modification despite its limitations in lateral resolution as compared to FESEM. The interlayer mineral water content of natural muscovite is proposed as the primary reason that mica behaves differently to a standard dielectric.
关键词: Characterization and analytical techniques,Muscovite mica,Femtosecond mineral processing,Optical surface profiling,Laser surface patterning
更新于2025-09-23 15:19:57
-
Mechanically controlled reversible photoluminescence response in all-inorganic flexible transparent ferroelectric/mica heterostructures
摘要: The ability to reversibly control the luminescent properties of functional materials with diverse external stimuli, such as an electric ?eld, strain, and temperature, is crucial for designing high-performance optical devices. Here, we demonstrate that a purely mechanical strain in a ?exible mica substrate triggered by bending can be used to dramatically modify the photoluminescence response of a Pr-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 epitaxial thin ?lm in a stable and repeatable manner with a large gauge factor of up to 6853. The strong dependence of the photoluminescence performance on the mechanical bending arises from strain-induced variations in the lattice symmetry of the host ?lm and the local crystal ?eld around the Pr3+. In particular, because of the nature of mica, the ?lm structure exhibits excellent antifatigue characteristics after 104 bending cycles as well as high optical transparency in the range of 450–780 nm. This study provides a viable route for exploring the correlation between structural symmetry and photoluminescence in ferroelectric thin-?lm systems and offers new possibilities for developing all-inorganic, recon?gurable, transparent and ?exible light sources, photodetectors, and wearable sensors.
关键词: ferroelectric,photoluminescence,wearable sensors,mica,flexible,transparent
更新于2025-09-16 10:30:52
-
Highly efficient flexible organic light-emitting diodes based on a high-temperature durable mica substrate
摘要: Muscovite mica is expected to show great potential in flexible optoelectronics due to its superb temperature tolerance, high transmittance, chemical stability, and mechanical durability. This flexible substrate produces sputtered transparent conducting electrodes (TCEs) with excellent film quality with high transmittance and conductivity. In this study, a designed composite TCE consisting of aluminum-doped zinc oxide (AZO) and indium tin oxide (ITO) is proposed to simultaneously maximize flexibility and conductivity. Blue-, green-, and red-emitting flexible organic light-emitting diodes (FOLEDs) using composite TCEs on mica exhibited satisfactory performance with maximum respective electroluminescence efficiencies of 18.1% (38.7 cd/A), 18.7% (66.2 cd/A), and 13.3% (22.2 cd/A). Furthermore, the green-emitting FOLEDs were modified to construct tandem FOLEDs, giving a higher peak efficiency of 27.9% (93.3 cd/A) and saturated green emission. These results can serve as a useful reference for future work on composite TCEs on mica for FOLEDs in display and lighting applications.
关键词: Organic light-emitting diodes (OLEDs),Flexible,Tandem,Indium tin oxide (ITO),Muscovite mica,Aluminum-doped zinc oxide (AZO)
更新于2025-09-16 10:30:52
-
Wearable Gallium Oxide Solar-blind Photodetectors on Muscovite Mica Having Ultra-High Photoresponsivity And Detectivity With Added High Temperature Functionalities
摘要: Wearable Gallium oxide solar-blind photodetector fabricated on muscovite mica is reported for room temperature as well as high temperature operations. The ultra-high photoresponsivity of 9.7 A/W is obtained for 5V applied bias at room temperature under 75 μW/cm2 weak illumination of 270 nm wavelength. The detector enables very low noise equivalent power (NEP) of 9×10-13 W/Hz1/2 and ultra-high detectivity of 2×1012 jones which shows the magnificent detection sensitivity. Further, bending tests are performed for robust utilization of flexible detectors up to 500 bending cycles with each bending radius of 5 mm. After 500 bending cycles, device shows slight photocurrent decrease. The bending performances exhibit excellent potential for wearable applications. Moreover, photocurrent and dark current characteristics above room temperature demonstrate the outstanding functionalities till 523K temperature which is remarkable for flexible photodetectors. The obtained results show the potential of Gallium oxide solar-blind photodetectors at room temperature and high temperatures environments which pave the ways for futuristic smart and flexible sensors.
关键词: photoresponse,Gallium Oxide,Solar-blind photodetectors,detectivity,flexible photodetector,Mica
更新于2025-09-11 14:15:04
-
Analyses of orientational superlattice domains in epitaxial ZnTe thin films grown on graphene and mica
摘要: ZnTe has a favorable band alignment with CdTe and is an ideal buffer between CdTe and metal contacts used in photovoltaics. Using metalorganic chemical vapor deposition, we report epitaxial growth of ZnTe thin films on 2D substrates, namely, single crystal graphene on amorphous SiO2/Si and freshly cleaved mica(001). Despite the large in-plane lattice mismatches between ZnTe and graphene (~75%) and between ZnTe and mica(001) (~17%), X-ray pole figure analyses show preferred epitaxial alignments with the out-of-plane orientation along [111] for ZnTe films on both substrates. For ZnTe on graphene, besides the primary in-plane orientation of [(1)110]ZnTe==[1(1)1]graphene, two secondary in-plane orientations rotating ±25.28° away from the primary domain are found. A geometrical superlattice area mismatch (GSAM) model is implemented to explain the existence of the primary and secondary domains in ZnTe on graphene. For ZnTe on mica(001), only one in-plane orientational domain is found experimentally with the epitaxial relationship of [(1)110]ZnTe==[100]mica (or [(1)110]ZnTe==[2(1)(1)10]mica if four-index notation is used for mica). However, the prediction of domain orientation between ZnTe and mica(001) based on the GSAM model slightly deviates from that observed experimentally. Furthermore, it should be noted that multiple order twinning domains of the primary domain are observed in both ZnTe films. While coexisting with the primary domain, each of the twinning domains is still epitaxially aligned with respect to the substrate. The in-depth understanding of ZnTe’s epitaxial behaviors on graphene and mica(001) provides a valuable guidance for future studies on epitaxy of 3D zinc-blende overlayers on 2D hexagonal substrates.
关键词: geometrical superlattice area mismatch model,mica,van der Waals epitaxy,X-ray pole figure,graphene,ZnTe,epitaxial growth
更新于2025-09-10 09:29:36