- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Electric field assisted spray coated lead free bismuth iodide perovskite thin film for solar cell application
摘要: Solution-processed Methylammonium iodo bismuthate (MBI) perovskite solar cell is fabricated by spray technique with changed applied voltages from 0 to 1000 V during the deposition of MBI thin film. The morphology and surface roughness of MBI films are influenced significantly by the electric field during film deposition. It is attributed to improve the atomization of spray droplets due to process of coulomb fission. The surface roughness of MBI film is reduced from 39 to 19 nm with increased applied voltages during the deposition from 0 V and 1000 V, respectively. A strong absorption band is observed ~500 nm for all MBI films. The MBI perovskite solar cell is showed enhancement in the efficiency with the maximum current density 2.33 mA/cm2 at 1000 V applied voltage during the deposition. The improvement in photovoltaic characteristics with applied voltage during the film deposition is attributed to the formation of more uniform film with improved surface morphology and roughness, resulting in efficient electron transfer and reduced recombination of charge carrier at grain boundaries.
关键词: Methyl ammonium bismuth (III) iodide,Spray deposition,Perovskite solar cell,Electric filed,Lead free perovskite
更新于2025-11-21 11:18:25
-
<i>In Situ</i> 2D Perovskite Formation and the Impact of the 2D/3D Structures on Performance and Stability of Perovskite Solar Cells
摘要: Hybrid organic and inorganic perovskite solar cells suffer from the lack of long-term stability and this negatively impacts the widespread application of this emerging and promising photovoltaic technology. In this work, aiming to increase the stability of perovskite films based on CH3NH3PbI3 and to deep understand the formation of 2D structures, solutions of alkylammonium chlorides containing 8, 10 and 12 carbons were introduced during the spin-coating on the surface of 3D perovskite films leading to the in situ formation of 2D structures. It was possible to identify the chemical formulae of some 2D structures formed by XRD and UV-Vis analysis of the modified films. Interestingly, the increase in the stability of the CH3NH3PbI3 films due to the formation of a 2D+3D perovskite network was only possible in planar TiO2 substrates. The increase on stability of the CH3NH3PbI3 films follows the surfactant molecule order: octylammonium (8C) > decylammonium (10C) > dodecylammonium (12C) chlorides > standard. We observed an increase of 17.6 % in the lifetime of the devices assembled with modified perovskite film compared to our standard device, which is directly linked to the improvement of the charge carrier lifetimes obtained from Time-Correlated Single Photon Counting (TCSPC) measurements.
关键词: Energy Conversion,Photovoltaics,Stability,2D perovskite,Perovskite Solar Cell
更新于2025-11-19 16:56:35
-
Electron Transport Improvement of Perovskite Solar Cell via ZIF-8 Derived Porous Carbon Skeleton
摘要: To improve electron transport rate of perovskite solar cell, ZIF-8 derived porous carbon skeleton layer is prepared by carbonizing the ZIF-8 thin film on conducting glass as the electron transport skeleton of perovskite solar cell. Polyvinyl pyrrolidone is added during the synthesis of ZIF-8 to reduce the particle size of ZIF-8 and decrease the carbonization temperature below 600°C. The porous structure of ZIF-8 is mainly reserved at the optimized carbonization temperature. Then TiO2 nanoparticles are deposited on the surface of porous carbon skeleton to form an electron transport layer of perovskite solar cell with the structure of FTO/ZIF-8 derived porous carbon layer/TiO2/Perovskite/Spiro-OMeTAD/Au. Due to the good conductivity of the ZIF-8 derived porous carbon skeleton, the photogenerated electron transport rate of perovskite solar cell is increased. At the same time, the porous structure of ZIF-8 derived carbon layer increases the contact area between the perovskite layer and the TiO2 layer to favor separation of photogenerated charges. Therefore, the light-to-electric conversion efficiency of CH3NH3PbI3 perovskite solar cell is enhanced from 14.25% to 17.32%.
关键词: Electron transport,Increase of contact area,Porous carbon skeleton,Good conductivity,Polyvinyl pyrrolidone,Perovskite solar cell,Metal organic frameworks
更新于2025-11-14 17:04:02
-
Preparation of high quality perovskite thin film in ambient air using ethylacetate as anti-solvent
摘要: Methylamine lead iodide (CH3NH3PbI3) perovskite thin film solar cell has attracted much attention due to its low cost and high photoelectric conversion efficiency. Preparation of high quality perovskite thin film is the key to obtain high conversion efficiency of solar cells. Here, the pinhole-free CH3NH3PbI3 layer with high coverage and smooth surface is prepared by the one-step solution method in air with ethylacetate as anti-solvent on an electron transport hybrid layer of TiO2 nanoparticles coated porous carbon. The effect of ethylacetate as anti-solvent on the quality of perovskite thin film is studied in detail by comparing with chlorobenzene and ethylether. The high saturation and humidity resistance of ethylacetate in air control the nucleation and growing kinetics of perovskite crystals during the spin coating process, which facilitates the formation of uniform pinhole-free perovskite thin films. The perovskite solar cell based on the prepared high quality thin film achieves the highest conversion efficiency of 17.41% in ambient air with a relative humidity of 35%, which is superior to the perovskite thin films prepared with chlorobenzene and ethylether (conversion efficiency of 10.80% and 10.20%). The higher light-to-electric conversion efficiency is due to high coverage of the pinhole-free perovskite thin film and good contact with the electron transport layer and the hole transport layer.
关键词: Anti-solvent,Perovskite solar cell,Uniform perovskite thin film,Ethylacetate
更新于2025-11-14 17:03:37
-
Dendritic PAMAM polymers for strong perovskite intergranular interaction enhancing power conversion efficiency and stability of perovskite solar cells
摘要: The modification of perovskite intergranular perovskite/perovskite interface plays a critical role for power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). In this work, polyamidoamine (PAMAM) dendrimers are utilized as the dendritic crystallization framework templating the perovskite-crystallizing process. The interactions at the perovskite intergranular interface are considerably strengthened at an ambient environment with dendritic PAMAMs crosslinking the perovskite grains. Consequently, the perovskite morphology is remarkably improved by suppressing the grain/grain-aggregate boundaries for the pinhole removal, which produces a compact, uniform and non-pinhole perovskite film. Finally, the strengthened interfacial interactions dramatically enhance the PCE value of unencapsulated PSCs about 42.6% at an ambient condition. Besides, the unencapsulated PAMAM-modified device can keep 73% of initial PCE value in 400 h while the control device decays to 5% of initial PCE value in 50 h. These results reveal that dendritic polymers might remarkably improve the PCE value and the stability of PSCs. This work provides a new molecular design guideline to effectively regulate the perovskite intergranular interfacial interactions.
关键词: Grain boundary,Interfacial interaction,Intergranular interface,Dendrimer,Perovskite solar cell
更新于2025-11-14 15:27:09
-
Editorial: Window Electrodes for Emerging Thin Film Photovoltaics
摘要: Photovoltaics (PVs) fabricated by printing at low temperature onto ?exible substrates are attractive for a broad range of applications in buildings and transportation, where ?exibility, color-tuneability, and light-weight are essential requirements. Two emerging PV technologies on the cusp of commercialization are organic PVs and perovskite PVs. CIGS, CdTe, and a-Si solar cells also have potential applications in ?exible PVs. It is widely recognized that these classes of PV will only ful?ll their full cost advantage and functional advantages over conventional thin ?lm PVs if a suitable transparent, ?exible electrode is forthcoming (Lu et al., 2018). Indium tin oxide (ITO) is the most popular transparent conductor material for opto-electronics including solar cells and displays. However, the fragile ceramic nature makes ITO unsuitable for future electronics such as ?exible, stretchable, and wearable electronics because it will easily develop cracks under mechanical deformation. Instead, optically thin ?lm or metallic nanowire networks (Sannicolo et al., 2016) of the most electrically conductive metals copper (Cu), silver (Ag), and gold (Au) have shown promising potential, in spite of the oxidation and parasitic absorption problem of Cu and the high material cost problem of Ag and Au. Whilst the chemical, thermal, and electrical stability of transparent electrodes based on these metals presents challenges, it has been shown that thin coating layers can be very e?cient in preserving their integrity and properties (Celle et al., 2018). Additionally, low-temperature, high-throughput deposition techniques, such as spatial atomic layer deposition (SALD) (Mu?oz-Rojas and MacManus-Driscoll, 2014; Khan et al., 2018), can be used to deposit these protective layers.
关键词: solar cell,photovoltaic,transparent electrode,perovskite solar cell,organic photovoltaic,metal ?lm,organic solar cell
更新于2025-09-23 15:21:01
-
Structural and Electrical Investigation of Cobalt-Doped NiOx/Perovskite Interface for Efficient Inverted Solar Cells
摘要: Inorganic hole-transporting materials (HTMs) for stable and cheap inverted perovskite-based solar cells are highly desired. In this context, NiOx, with low synthesis temperature, has been employed. However, the low conductivity and the large number of defects limit the boost of the e?ciency. An approach to improve the conductivity is metal doping. In this work, we have synthesized cobalt-doped NiOx nanoparticles containing 0.75, 1, 1.25, 2.5, and 5 mol% cobalt (Co) ions to be used for the inverted planar perovskite solar cells. The best e?ciency of the devices utilizing the low temperature-deposited Co-doped NiOx HTM obtained a champion photoconversion e?ciency of 16.42%, with 0.75 mol% of doping. Interestingly, we demonstrated that the improvement is not from an increase of the conductivity of the NiOx ?lm, but due to the improvement of the perovskite layer morphology. We observe that the Co-doping raises the interfacial recombination of the device but more importantly improves the perovskite morphology, enlarging grain size and reducing the density of bulk defects and the bulk recombination. In the case of 0.75 mol% of doping, the bene?cial e?ects do not just compensate for the deleterious one but increase performance further. Therefore, 0.75 mol% Co doping results in a signi?cant improvement in the performance of NiOx-based inverted planar perovskite solar cells, and represents a good compromise to synthesize, and deposit, the inorganic material at low temperature, without losing the performance, due to the strong impact on the structural properties of the perovskite. This work highlights the importance of the interface from two di?erent points of view, electrical and structural, recognizing the role of a low doping Co concentration, as a key to improve the inverted perovskite-based solar cells’ performance.
关键词: hole transport material,inverted planar perovskite solar cell,perovskite morphology,Co-doped NiOx,electrical conductivity
更新于2025-09-23 15:21:01
-
Hydroxymethyl Functionalized PEDOT-MeOH:PSS for Perovskite Solar Cells
摘要: Poly(hydroxymethylated-3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT-MeOH:PSS) conducting polymers are synthesized and incorporated in inverted structured perovskite solar cells (PVSCs) as hole transport materials. The highest occupied molecular orbital of PEDOT-MeOH is lowered by adding a hydroxymethyl (-MeOH) functional group to ethylenedioxythiophene (EDOT), and thus the work function of PEDOT-MeOH:PSS is increased. Additionally, hydrogen bonding can be formed among EDOT-MeOH monomers and between EDOT-MeOH monomers and sulfate groups on PSS, which promote PEDOT-MeOH chain growth and enhance PSS doping. The electronic, microstructural, and surface morphological properties of PEDOT-MeOH:PSS are modified by changing the amount of PSS and ferric oxidizing agent used in the polymerization and by adding ethylene glycol in the post-synthesis treatment. The PVSCs based on ethylene glycol treated PEDOT-MeOH:PSS overperform the PVSCs based on commercial PEDOT:PSS because of the better energetic alignment and the enhancement of PEDOT-MeOH:PSS electrical conductivity. This work opens the way to develop new hole transport materials for highly efficient inverted PVSCs.
关键词: hole transport material,perovskite,solar cell,electrical conductivity,work function
更新于2025-09-23 15:21:01
-
Enhanced stability and efficiency in inverted perovskite solar cells through graphene doping of PEDOT:PSS hole transport layer
摘要: Poly(3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) plays a relevant role in the device performance as hole extraction layer (HTL) of inverted perovskite solar cells. Here, we show a simple low-temperature spin coating method for obtaining homogenous graphene-doped thin films of PEDOT:PSS with improved electrical conductivity without decreasing optical transmittance. Moreover, the crystallinity and stability in ambient conditions of the perovskite grown on it are enhanced. The hydrophobic character of graphene probably blocks undesirable reactions hampering degradation. By impedance spectroscopy it is demonstrated better charge extraction and reduction of recombination mechanisms at the doped-HTL/perovskite interface, resulting in improved photovoltaic parameters of the solar cell and greater stability at room operation conditions thus providing a simple and cost-effective method of preparing solar cells based on hybrid perovskites.
关键词: perovskite solar cell,PEDOT:PSS,doping,graphene,hole transport layer,impedance spectroscopy
更新于2025-09-23 15:21:01
-
Performance enhancement of inverted perovskite solar cells through interface engineering by TPD based bidentate self-assembled monolayers
摘要: Perovskite solar cells (PSCs) have recently appeared as a promising photovoltaic technology and attracted great interest in both photovoltaic industry and academic community. Numerous active researches related to the material processing and operational aspects of device fabrication are under progress since PSCs have a great potential for attaining higher performance compared to that of other solar cell technologies. In particular, interfacial engineering is a crucial issue for obtaining high efficiency in solar cells where perovskite absorber layer is deposited between hole and electron transport layers. In inverted type architecture, PEDOT:PSS is used as both hole transport layer and surface modifier; but unfortunately, this material bears instability due to its acidic nature. Thus, self-assembled monolayers (SAMs) not only are considered as suitable alternative, but also their application is regarded as an efficient and cost effective method to modify electrode surface since it provides a robust and stable surface coverage. In this context, we have employed two novel N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) based SAM molecules to customize indium tin oxide (ITO) surface in inverted type PSCs. Furthermore, fine-tuning of spacer groups enables us to study device performance depending on molecular structure. This study proposes promising materials for anode interface engineering and provides a feasible approach for production of organic semiconductor based SAMs to achieve high performance PSCs.
关键词: Interface,ITO,TPD,Bidentate,Self-assembled monolayer,Perovskite solar cell
更新于2025-09-23 15:21:01