修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

233 条数据
?? 中文(中国)
  • A facile method to fabricate a novel 3D porous silicon/gold architecture for surface enhanced Raman scattering

    摘要: Si-based surface enhanced Raman scattering (SERS) sensing technology is a powerful tool for the detection of various chemical and biological species. Further improvement of the simplicity, stability, sensitivity, and low cost of Si-based SERS platforms is still in great demand for real applications. In this study, the facile fabrication of three-dimensional (3D) porous Si/Au SERS platform with attractive SERS performances was reported. The developed method relied on laser-induced dendrite-like microstructure on the surface of Al-Si cast alloy followed by dealloying Al from the laser treated surface, leaving a 3D dendrite-like porous Si substrate. By sputtering, the substrate was coated with Au film to form 3D porous Si/Au SERS platform. Such 3D porous Si/Au SERS platform had high SERS sensitivity that enabled ultralow concentration detection of R6G molecules down to 10-15 M with enhancement factor in the range of 1011 to 1012. The relative standard deviation of 6.2% was obtained from 15 random SERS spectrum, indicating superior reproducibility of the as-fabricated 3D porous Si/Au SERS platform.

    关键词: laser,porous Si/Au,SERS,dealloying

    更新于2025-11-28 14:24:20

  • Fluorescence spectra of colloidal self-assembled CdSe nano-wire on substrate of porous Al <sub/>2</sub> O <sub/>3</sub> /Au nanoparticles

    摘要: We present a self-assembly method to prepare array nano-wires of colloidal CdSe quantum dots on a substrate of porous Al2O3 film modified by gold nanoparticles. The photoluminescence (PL) spectra of nanowires are in situ measured by using a scanning near-field optical microscopy (SNOM) probe tip with 100-nm aperture on the scanning near-field optical microscope. The results show that the binding sites from the edge of porous Al2O3 nanopores are combined with the carboxyl of CdSe quantum dots’ surface to form an array of CdSe nanowires in the process of losing background solvent because of the gold nanoparticles filling the nano-holes of porous Al2O3 film. Compared with the area of non-self-assembled nano-wire, the fluorescence on the Al2O3/Au/CdSe interface is significantly enhanced in the self-assembly nano-wire regions due to the electron transfer conductor effect of the gold nanoparticles’ surface. In addition, its full width at half maximum (FWHM) is also obviously widened. The method of enhancing fluorescence and energy transfer can widely be applied to photodetector, photocatalysis, optical display, optical sensing, and biomedical imaging, and so on.

    关键词: porous Al2O3 film,colloidal self-assembled method,CdSe nano-wire,enhanced photoluminescence

    更新于2025-11-25 10:30:42

  • Functionalized and oxidized silicon nanosheets: Customized design for enhanced sensitivity towards relative humidity

    摘要: The use of completely oxidized two-dimensional (2D) silicon nanosheets (SiNSs) represents a novel approach for the application of 2D silicon-based materials in the nanoelectronics field. Densely stacked and highly porous oxidized SiNSs (OSiNSs) act as a sensitive layer for humidity detection. Due to the oxidation-caused porosity of the SiNSs and the possibility functionalize the 2D surface with hydrophilic groups, this hybrid material exhibits an extremely good sensitivity towards relative humidity (RH). In this work, precise tuning of the SiNSs’ sensing properties by their functionalization is demonstrated. In particular, the modification with methacrylic acid (MAA) groups, leading to SiNS-MAA, and the subsequent deposition on interdigitated electrodes double the capacitance value in the range of 20-85%RH. These values were achieved after the full oxidation of SiNS-MAA in ambient conditions. The mentioned changes in capacitance are extremely high compared to the response of the so far known common polymer humidity sensors. Contrary to that, this response is neutralized when the SiNSs are functionalized with tert-butyl acrylic acid (tBMA), a rather hydrophobic functional group. The fabricated devices show, how the specific functionalization of SiNSs serves as a reliable tool to provide sensitivity towards RH. Similar approach, based on tuning the functionality, can be applied to achieve e.g., sensor array selectivity. For this purpose, the functional groups on the surface of the nanomaterial can be further modified. Additional molecules with sensitivities towards various surrounding conditions could be attached. Furthermore, these functional molecules can be used for subsequent (bio)molecule immobilization, which can serve as sensitive molecular groups towards surrounding substrates and gases. However, one of the main challenges in sensor technology is to find a highly selective solution: a sensor system capable to differentiate among different vapor species. The described strategy can serve as an access towards new and promising solutions, which can help to face this issue in modern nanomaterials-based technology.

    关键词: two-dimensional materials,porous silicon,functionalization,silicon nanosheets,hybrid systems,moisture content

    更新于2025-11-21 11:20:48

  • Enhanced working efficiency of Si solar cell by water induced nano-porous thermal cooling layer

    摘要: Nano-porous thermal cooling layer (TCL) of thickness 14 mm beneath a Si solar cell reduces its working temperature from 82 °C to 68 °C This reduced working temperature increase its absolute working ef?ciency by 0.75%. X-Ray diffraction analysis of the material used in TCL shows its amorphous nature. The SEM images con?rm interconnected carbon particles are forming micro-channels within the TCL. Further FESEM analysis has been done to examine the in-depth structure of the carbon particles and shows the nano-porous topography within the particle. The porosity of used TCL is examined by BET measurement which con?rms the highly porous nature of the TCL having surface area of the order of 798.35 m2 g?1 with average pore size of 2.3 nm. The induced water concentration (0.049 to 0.49 ml cm?3) dependent enhanced cooling ef?ciency of nano-porous TCL has been studied in detail. The use of water saturated (0.49 ml cm?3) TCL (14 mm thick) further decreases the working temperature of the device from 68 °C to 58 °C and the device works below this temperature for around three hours. Further, in order to enhance the effective time duration, the TCL thickness (4 mm to 26 mm) dependent cooling ef?ciency of water saturated TCL has been analyzed in detail. Use of optimized water saturated TCL beneath the solar cell improve its working ef?ciency from 11.4% (at 82 °C) to 12.69% (at 58 °C) which shows an absolute and relative enhancement of 1.29% and 11.32%, respectively in cell ef?ciency. Finally, thermal analyses of TCL and water cooling mechanism in it have been discussed in detail.

    关键词: ef?ciency enhancement,Si solar cell,thermal cooling layer,cooling plateau,cooling agent,nano-porous

    更新于2025-11-21 11:18:25

  • A highly stretchable, transparent and conductive wood fabricated by in-situ photopolymerization with polymerizable deep eutectic solvents

    摘要: The rational design of high-performance flexible transparent electrically conducting sensor attracts considerable attention. However, these designed devices predominantly utilize glass and plastic substrates, which are expensive and not environmentally friendly. Here, novel transparent and conductive woods (TCWs) were fabricated by using renewable wood substrate and low-cost conductive polymer. Polymerizable deep eutectic solvents (PDES), acrylic-acid (AA)/choline chloride (ChCl), were used as backfilling agents and in-situ photopolymerized in the delignified wood, which endowed the materials with high transparency (transmittance of 90 %), good stretchability (strain up to 80 %), and high electrical conductivity (0.16 S m-1). The retained cellulose orientation and strong interactions between cellulose-riched template and poly(PDES) render the TCWs excellent mechanical properties. Moreover, the TCWs exhibited excellent sensing behaviors to strain/ touch, even at low strain. Therefore, these materials can be used to detect weak pressure such as human being’s subtle bending-release activities. This work provides a new route to fabricate functional composite materials and devices which have promising potential for electronics applications in flexible displays, tactile skin sensors and other fields.

    关键词: deep eutectic solvent,stretchable wood,porous,transparent wood,strain/touch sensor

    更新于2025-11-21 11:18:25

  • Strong Cathodoluminescence and Fast Photoresponse from Embedded CH3NH3PbBr3 Nanoparticles Exhibiting High Ambient-Stability

    摘要: This study presents a comprehensive analysis of the strong cathodoluminescence (CL), photoluminescence (PL), and photoresponse characteristics of CH3NH3PbBr3 nanoparticles (NPs) embedded in a mesoporous nanowire template. Our study revealed a direct correlation between the CL and PL emissions from the perovskite NPs (Per NPs), for the first time. Per NPs are fabricated by a simple spin coating of perovskite precursor on the surface of metal-assisted-chemically-etched mesoporous Si NWs array. The Per NPs confined in the mesopores show blue shifted and enhanced CL emission as compared to the bare perovskite film, while the PL intensity of Per NPs dramatically high compared to its bulk counterpart. A systematic analysis of the CL/PL spectra reveals that the quantum confinement effect and ultra-low defects in Per NPs are mainly responsible for the enhanced CL and PL emissions. Low-temperature PL and time-resolved PL analysis confirm the high exciton binding energy and radiative recombination in Per NPs. The room temperature PL quantum yield of the Per NPs film on the NW template was found to be 40.5 %, while that of Per film was 2.8%. The Per NPs show improved ambient air-stability than the bare film due to the protection provided by the dense NW array, since dense NW array can slow down the lateral diffusion of oxygen and water molecules in Per NPs. Interestingly, the Si NW/Per NPs junction shows superior visible light photodetection and the prototype photodetector shows a high responsivity (0.223 A/W) with a response speed of 0.32 sec and 0.28 sec of growth and decay in photocurrent, respectively, at 2V applied bias, which is significantly better than the reported photodetectors based on CH3NH3PbBr3 nanostructures. This work demonstrates a low-cost fabrication of CH3NH3PbBr3 NPs on a novel porous NW template, which shows excellent photophysical and optoelectronic properties with superior ambient stability.

    关键词: Perovskite Nanoparticles,PL QY enhancement,Porous Si Nanowires,Fast Photoresponse,CL Enhancement

    更新于2025-11-21 11:01:37

  • Iodine Induced PbI <sub/>2</sub> Porous Morphology Manipulation for High-Performance Planar Perovskite Solar Cells

    摘要: The quality of the perovskite film has a vital influence on the performance of perovskite solar cells and it is quite desirable to simultaneously manipulate the crystallization and morphology of the perovskite film. In this study, conventional PbI2 is replaced with a PbI2/I2 mixed precursor during the first step of sequential deposition, causing the formation of a PbI2 porous nanostructure. By changing the content of I2 in the precursor, the morphology of the PbI2 film as well as the resulting perovskite film can be successfully modulated. With an optimal content of I2, a high-quality perovskite film with a pure phase and smooth surface can be achieved. As a result, the conversion efficiency of perovskite solar cells using a PbI2/I2 mixed precursor can be as high as 18.63%, compared to 16.89% for the reference device through traditional sequential deposition with a pure PbI2 precursor.

    关键词: porous PbI2,iodine,perovskite,sequential deposition,solar cell

    更新于2025-11-20 15:33:11

  • Adsorption and Photocatalytic Decomposition of Gaseous 2-Propanol Using TiO2-Coated Porous Glass Fiber Cloth

    摘要: Combinations of TiO2 photocatalysts and various adsorbents have been extensively investigated for eliminating volatile organic compounds (VOCs) at low concentrations. Herein, TiO2 and porous glass cloth composites were prepared by acid leaching and subsequent TiO2 dip-coating of the electrically applied glass (E-glass) cloth, and its adsorption and photocatalytic ability were investigated. Acid leaching increased the specific surface area of the E-glass cloth from 1 to 430 m2/g while maintaining sufficient mechanical strength for supporting TiO2. Further, the specific surface area remained large (290 m2/g) after TiO2 coating. In the photocatalytic decomposition of gaseous 2-propanol, the TiO2-coated porous glass cloth exhibited higher adsorption and photocatalytic decomposition ability than those exhibited by the TiO2-coated, non-porous glass cloth. The porous composite limited desorption of acetone, which is a decomposition intermediate of 2-propanol, until 2-propanol was completely decomposed to CO2. The CO2 generation rate was affected by the temperature condition (15 or 35 °C) and the water content (2 or 18 mg/L); the latter also influenced 2-propanol adsorption in photocatalytic decomposition. Both the conditions may change the diffusion and adsorption behavior of 2-propanol in the porous composite. As demonstrated by its high adsorption and photocatalytic ability, the composite (TiO2 and porous glass cloth) effectively eliminates VOCs, while decreasing the emission of harmful intermediates.

    关键词: air purification,composite,adsorption,microporous material,porous glass,photocatalyst,TiO2

    更新于2025-11-19 16:51:07

  • Highly Photoluminescent and Stable N-Doped Carbon Dots as Nanoprobes for Hg2+ Detection

    摘要: We developed a microreactor with porous copper fibers for synthesizing nitrogen-doped carbon dots (N-CDs) with a high stability and photoluminescence (PL) quantum yield (QY). By optimizing synthesis conditions, including the reaction temperature, flow rate, ethylenediamine dosage, and porosity of copper fibers, the N-CDs with a high PL QY of 73% were achieved. The PL QY of N-CDs was two times higher with copper fibers than without. The interrelations between the copper fibers with different porosities and the N-CDs were investigated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform infrared spectroscopy (FTIR). The results demonstrate that the elemental contents and surface functional groups of N-CDs are significantly influenced by the porosity of copper fibers. The N-CDs can be used to effectively and selectively detect Hg2+ ions with a good linear response in the 0~50 μM Hg2+ ions concentration range, and the lowest limit of detection (LOD) is 2.54 nM, suggesting that the N-CDs have great potential for applications in the fields of environmental and hazard detection. Further studies reveal that the different d orbital energy levels of Hg2+ compared to those of other metal ions can affect the efficiency of electron transfer and thereby result in their different response in fluorescence quenching towards N-CDs.

    关键词: carbon dots,microreactor,Hg2+ detection,porous copper fibers

    更新于2025-11-19 16:46:39

  • In suit inducing electron-donating and electron-withdrawing groups in carbon nitride by one-step NH4Cl-assisted route: A strategy for high solar hydrogen production efficiency

    摘要: Owing to insu?cient active sites, strongly bound excitons and insu?cient optical absorption, polymer semiconductors have only shown mild activity as potential candidates for photocatalysis. A g-C3N4 with improved optical absorption capacity, charge transfer performance and porosity was successfully prepared by a one-step NH4Cl-assisted route. Interaction of melamine with NH4Cl preparation of Porous g-C3N4(CN-xy) with active functional groups modi?ed pore wall shown to result in highly crystalline species with a maximum π-π layer stacking distance of heptazine units of 0.321 nm, decreases the optical band gap from 2.80 to 2.13 eV and maximum surface area reached 56.485 m2 g?1. The balanced improvement of the multiple defects of g-C3N4 makes the photocatalytic degradation of RhB and the photocatalytic hydrogen production e?ciency 4 and 5 times higher than the pristine g-C3N4, respectively.

    关键词: Photocatalytic,g-C3N4,Porous,Trade-o?,Active functional groups

    更新于2025-11-19 16:46:39