- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A porous Ni-O/Ni/Si photoanode for stable and efficient photoelectrochemical water splitting
摘要: Excellent photoelectrochemical activity was demonstrated for an easily prepared porous Ni-O/Ni/Si photoanode with an onset potential of 0.93 VRHE, a photocurrent of 39.7 mA cm?2 at 1.23 VRHE, an energy conversion efficiency of 3.2% and a stability above 100 h.
关键词: stability,water splitting,porous Ni-O/Ni/Si photoanode,energy conversion efficiency,photoelectrochemical
更新于2025-09-04 15:30:14
-
Creation of micropores by RAFT copolymerization of conjugated multi-vinyl cross-linkers
摘要: We report a new methodology that allows for forming micropores in hierarchically porous polymers by employing the reversible addition–fragmentation chain transfer (RAFT) copolymerization of conjugated multi-vinyl cross-linkers with styrene. Using divinylbenzene, 4,4’-divinylbiphenyl, 1,3,5-tris(4-vinylphenyl) benzene and tetrakis(4-vinylbiphenyl)methane as cross-linkers, the RAFT copolymerization was carried out in the presence of polylactide macro-chain transfer agents. During the polymerization, microphase separation occurred spontaneously to produce cross-linked block polymer precursors with a bicontinuous morphology composed of polylactide and cross-linked polystyrene microdomains. Hierarchically porous polymers with strong fluorescence were successfully derived by polylactide etching. We demonstrate that the rigid conjugated structure of the cross-linkers with a high cross-linking density is critical for creating the micropores and for stabilizing the mesopores that are templated by the polylactide domain.
关键词: hierarchically porous polymers,polylactide macro-chain transfer agents,RAFT copolymerization,micropores,conjugated multi-vinyl cross-linkers
更新于2025-09-04 15:30:14
-
Colorimetric Sensor Array for Monitoring CO and Ethylene
摘要: Developing miniaturized and inexpensive detectors remains an important and practical goal for field-deployable monitoring of toxic gases and other bioactive volatiles. CO (a common toxic pollutant) and ethylene (the phytohormone primarily responsible for fruit ripening) share the capability of strong back-π-bonding to low-oxidation-state metal ions, which has proved important in the development of metal-ion-based sensors for these gases. We report herein cumulative colorimetric sensor arrays based on Pd(II)-silica porous microsphere sensors and their application as an optoelectronic nose for rapid colorimetric quantification of airborne CO and ethylene. Quantitative analysis of two gases was obtained in the range of 0.5 to 50 ppm with detection limits at the sub-parts-per-million level (~0.4 ppm) after 2 min of exposure and ~0.2 ppm after 20 min (i.e., <0.5% of the permissible exposure limit for CO and <10% of the ethylene concentration needed for fruit ripening). We further validate that common potential interfering agents (e.g., changes in humidity or other similar air pollutants such as NOx, SO2, H2S, or acetylene) are not misidentified with CO or ethylene. Finally, the sensor is successfully used for the quantification of ethylene emitted from ripening bananas, demonstrating its potential applications in the monitoring of fruit ripening during storage.
关键词: Pd(II)-silica porous microsphere sensors,CO,ethylene,colorimetric sensor array,optoelectronic nose
更新于2025-09-04 15:30:14