修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

11 条数据
?? 中文(中国)
  • Fully Packaged Portable Thin Film Biosensor for the Direct Detection of Highly Pathogenic Viruses from On-Site Samples

    摘要: The thin film transistor (TFT) is a promising biosensor system with great sensitivity, label-free detection, and a quick response time. However, even though the TFT sensor has such advantageous characteristics, the disadvantages hamper the TFT sensor's application in the clinical field. The TFT is susceptible to light, noise, vibration, and limited usage, and this significantly limits its on-site potential as a practical biosensor. Herein, we developed a fully packaged, portable TFT electrochemical biosensor into a chip form, providing both portability through minimizing the laboratory equipment size and multiple safe usages by protecting the semiconductor sensor. Additionally, a safe environment that serves as a miniature probe station minimizes the previously mentioned disadvantages, while providing the means to properly link the TFT biosensor with a portable analyzer. The biosensor was taken into a biosafety level 3 (BSL-3) laboratory setting to analyze highly pathogenic avian influenza virus (HPAIV) samples. This virus quickly accumulates within a host, and therefore, early stage detection is critical to deterring the further spread of the deadly disease to other areas. However, current on-site methods have poor limits of detection (105?106 EID50/mL), and because the virus has low concentration in its early stages, it cannot be detected easily. We have compared the sample measurements from our device with virus concentration data obtained from a RT-PCR (virus range: 100?104 EID50/mL) and have identified an increasing voltage signal which corresponds to increasing virus concentration.

    关键词: avian influenza virus,label-free detection,portable biosensor,chip sensor,rapid detection

    更新于2025-09-23 15:23:52

  • Surface-Enhanced Raman Scattering (SERS) With Silver Nano Substrates Synthesized by Microwave for Rapid Detection of Foodborne Pathogens

    摘要: Rapid and sensitive methods have been developed to detect foodborne pathogens, a development that is important for food safety. The aim of this study is to explore Surface-enhanced Raman scattering (SERS) with silver nano substrates to detect and identify the following three foodborne pathogens: Escherichia coli O157: H7, Staphylococcus aureus and Salmonella. All the cells were resuspended with 10 mL silver colloidal nanoparticles, making a concentration of 107 CFU/mL, and were then exposed to 785 nm laser excitation. In this study, the results showed that all the bacteria can be sensitively and reproducibly detected directly by SERS. The distinctive differences can be observed in the SERS spectral data of the three food-borne pathogens, and the silver colloidal nanoparticles can be used as highly sensitive SERS-active substrates. In addition, the assay time required only a few minutes, which indicated that SERS coupled with the silver colloidal nanoparticles is a promising method for the detection and characterization of food-borne pathogens. At the same time, principle component analysis (PCA) and hierarchical cluster analysis (HCA) made the different bacterial strains clearly differentiated based on the barcode spectral data reduction. Therefore, the SERS methods hold great promise for the detection and identification of food-borne pathogens and even for applications in food safety.

    关键词: silver nanoparticles,rapid detection,food safety,Surface-enhanced Raman scattering,foodborne pathogens,bioanalysis

    更新于2025-09-23 15:22:29

  • [Environmental Chemistry for a Sustainable World] Nanosensors for Environmental Applications Volume 43 || Development of Optical Sensor Strips for Point-of-Care Testing for Pesticide

    摘要: Disposable or point-of-care sensors are a promising tool for low-cost and rapid sensing of analytes including pesticides. They find important applications in pesticide-contaminated food, agro-products, and water quality monitoring. This chapter highlights the implication and significance of pesticide residue identification in foodstuffs and overviews the most frequently engaged analytical techniques, and finally their benefits and limitations are discussed. Disposable strip-based biosensors have their intrinsic advantages and some disadvantages, but their cost-effectiveness and portability have turned them as a potential possibility for point-of-care (POC) testing of various pesticides. The fabrication of robust, low-cost, reliable, and sensitive sensors with the aid of both simple naked eye-based and portable readout-based detectors is the driving factor in this sensor’s technology area. The pending limitations can be overcome by adapting new specific recognition elements and better signal generative particles or systems. The integration of these devices with card readers or smartphones can make them more user-friendly and will provide more accurate quantitative information.

    关键词: Organophosphates,Pesticide,Immunoassay,Aptamer,Biosensors,Immunochromatographic assay,Point-of-care,Antibody,Rapid detection,Nanosensors,Gas chromatography

    更新于2025-09-23 15:21:01

  • Multi-dimensional fluorescence spectroscopy coupled with chemometrics in rapid antibiotic detection and discrimination

    摘要: Antibiotic residues in animal-derived foods pose risk to human health including chemical poisoning and antimicrobial resistance, and therefore, constant monitoring throughout the food supply chain is important. In the present study multi-dimensional fluorescence spectroscopy (3D and 2D) coupled with chemometric tools were tested for potential application to detect, discriminate and quantify penicillin G (PG), sulfadiazine (SF) and tetracycline (TC) in milk by direct measurement. Qualitative and quantitative calibration models were developed for prediction of antibiotic residues. Results demonstrated optimal discrimination of milk samples on the basis of antibiotic type and concentration with close to 100% of accuracy. Negative correlation between antibiotic concentration and fluorescence peak height was displayed (r ≥ 0.963 and p ≤ 0.002). A great potential for quantitative antibiotic determination was established with R2 > 0.9 and low standard errors of estimation indicating acceptable precision for the developed technique. Fluorescence spectroscopy demonstrated high specificity and sensitivity with detection limit below the maximum residue limit of PG, SF and TC in milk. Therefore, fluorescence spectroscopy can be used as an alternative method for rapid screening of antibiotic residues in milk at collection centers and processing plants to ensure product quality and safety.

    关键词: Rapid detection,Antibiotics,Discrimination,Fluorescence spectroscopy,Milk

    更新于2025-09-23 15:19:57

  • Single-cell classification of foodborne pathogens using hyperspectral microscope imaging coupled with deep learning frameworks

    摘要: A high-throughput hyperspectral microscope imaging (HMI) technology with hybrid deep learning (DL) framework defined as “Fusion-Net” was proposed for rapid classification of foodborne bacteria at single-cell level. HMI technology is useful in single-cell characterization, providing spatial, spectral and combined spatial-spectral profiles with high resolution. However, direct analysis of these high-dimensional HMI data is challenging. In this work, HMI data were decomposed into three parts as morphological features, intensity images, and spectral profiles. Multiple advanced DL frameworks including long-short term memory (LSTM) network, deep residual network (ResNet), and one-dimensional convolutional neural network (1D-CNN) were utilized, achieving classification accuracies of 92.2 %, 93.8 %, and 96.2 %, respectively. Taking advantage of fusion strategy, individual DL framework was stacked to form “Fusion-Net” that processed these features simultaneously with improved classification accuracy of up to 98.4 %. Our study demonstrated the ability of DL frameworks to assist HMI technology in single-cell classification as a diagnostic tool for rapid detection of foodborne pathogens.

    关键词: Machine learning,Hyperspectral microscopy,Data fusion,Rapid detection,Foodborne pathogen

    更新于2025-09-23 15:19:57

  • Immunochromatographic assay for melamine based on luminescent quantum dot beads as signaling probes

    摘要: To screen and detect the harmful substance melamine (MEL), a quantum-dot-bead-based immunochromatographic assay (QB-ICA) was formulated. After optimization, calibration was performed within the linear range from 0.06 to 0.28 ng mL?1, with limit of detection (LOD) of 0.04 ng mL?1. The LOD was 35 times lower than that of ICA that used colloidal gold nanoparticles (LOD ? 1.4 ng mL?1) and 40 times lower than that of the assay based on quantum dots (LOD ? 1.6 ng mL?1). In the detection of MEL in spiked pure milk using the proposed QB-ICA strategy, the LOD (LOD ? 0.19 ng mL?1) of the samples with the proposed pretreatment was 18.4 times lower than those of the samples without pretreatment (LOD ? 3.5 ng mL?1). The performance and practicability of the proposed QB-ICA system was validated; the obtained results reveal that QB-ICA is comparable with the conventional enzyme-linked immunosorbent assay (ELISA) method, but with enhanced applicability. Given its high sensitivity and practicability, the QB-ICA strategy could become a worthwhile alternative for the rapid, sensitive, and quantitative onsite detection of harmful substances, facilitating food safety monitoring.

    关键词: melamine,quantum-dot-bead-based immunochromatographic assay,sensitivity,rapid detection,food safety

    更新于2025-09-23 15:19:57

  • Rapid Detection of Pesticide Residues in Paddy Water Using Surface-Enhanced Raman Spectroscopy

    摘要: Pesticide residue in paddy water is one of the main factors affecting the quality and safety of rice, however, the negative effect of this residue can be effectively prevented and reduced through early detection. This study developed a rapid detection method for fonofos, phosmet, and sulfoxaflor in paddy water through chemometric methods and surface-enhanced Raman spectroscopy (SERS). Residue from paddy water samples was directly used for SERS measurement. The obtained spectra from the SERS can detect 0.5 mg/L fonofos, 0.25 mg/L phosmet, and 1 mg/L sulfoxaflor through the appearance of major characteristic peaks. Then, we used chemometric methods to develop models for the intelligent analysis of pesticides, alongside the SERS spectra. The classification models developed by K-nearest neighbor identified all of the samples, with an accuracy of 100%. For the quantitative analysis, the partial least squares regression models obtained the best predicted performance for fonofos and sulfoxaflor, and the support vector machine model provided optimal results, with a root-mean-square error of validation of 0.207 and a coefficient of determination of validation of 0.99952, for phosmet. Experiments for actual contaminated samples also showed that the above models predicted the pesticide residue values with high accuracy. Overall, using SERS with chemometric methods provided a simple and convenient approach for the detection of pesticide residues in paddy water.

    关键词: paddy water,SERS,pesticides,rapid detection

    更新于2025-09-19 17:15:36

  • Fluorometric lateral flow immunoassay for simultaneous determination of three mycotoxins (aflatoxin B1, zearalenone and deoxynivalenol) using quantum dot microbeads

    摘要: A fluorometric lateral flow immunoassay (LFA) is described for the simultaneous determination of the mycotoxins aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON). The method is based on the use of CdSe/SiO2 quantum dot microbeads (QBs) with a mean diameter of 106 nm. These have strong red luminescence (with excitation/emission peaks at 365/622 nm) which results in enhanced sensitivity. The QBs binding with monoclonal antibodies (mAbs) as the signal probes can react specifically with AFB1, ZEN and DON, respectively. There is an inverse correlation between the fluorescence signal intensity of test line and the analyte content, which can realize the quantitative analysis of analytes within 15 min. The limits of detection in solution are 10, 80 and 500 pg mL?1 for AFB1, ZEN and DON, respectively. Besides, the average recoveries from spiked feed range from 85.5 to 119.0%, and the relative standard deviations are less than 16.4% for both intra- and inter-day assays. The method was used to analyze naturally contaminated feedstuff, and this resulted in a good agreement with data obtained by LC-MS/MS.

    关键词: Rapid detection,LC-MS/MS,Food safety,Multiplexed,Immunochromatographic strip,Quantitative analysis,Cereal samples,Antibody,Feedstuff

    更新于2025-09-12 10:27:22

  • Sensitive detection of polycyclic aromatic hydrocarbons with gold colloid coupled chloride ion SERS sensor

    摘要: A simple surface-enhanced Raman spectroscopy (SERS) sensor based on an undecorated gold-colloid substrate was developed for the rapid and effective detection of polycyclic aromatic hydrocarbons (PAH). The SERS enhancement of the bare Au nanoparticles for PAH was achieved by adjusting chemical reduction conditions and Cl? content. The strongest SERS response of this system was achieved with 2.0 mL of trisodium citrate (1%) and 80 μL of NaCl (1 M). With this simple SERS sensor, qualitative and quantitative determination of trace-level naphthalene (NaP), phenanthrene (PHE) and pyrene (PYR) were achieved using a portable Raman spectrometer at detection limits of 1.38 μg L?1, 0.23 μg L?1, and 0.45 μg L?1, respectively. Plots of SERS intensity vs. PAH concentrations were linear, with correlation coefficients (R2) ranging from 0.8729 to 0.9994. More importantly, the SERS sensor was able to accurately identify each PAH in complex mixtures. This SERS technique shows great promise for the rapid and direct detection of aromatic hydrocarbons organic pollutants in field.

    关键词: SERS,gold colloid,rapid detection,chloride ion,PAH

    更新于2025-09-12 10:27:22

  • Detection of Salmonella from chicken rinsate with visible/near-infrared hyperspectral microscope imaging compared against RT-PCR

    摘要: Salmonella is an organism of importance to the poultry industry with increasingly stringent government regulatory standards. Real-time polymerase chain reaction (RT-PCR) and plating procedures on nutrient enriched growth media have been the standard detection methods of Salmonella from broiler chicken carcasses for years. These methods are proven, but offer disadvantages in the amount of time or reoccurring sample cost. Here, we propose the use of a hyperspectral microscope imaging system (HMI) for comparison to standard detection methods. Broiler chicken carcasses were rinsed and plated on Salmonella selective agar. Colonies from plates were picked and RT-PCR was used as a confirmation test to verify plating results, while HMI was collected from the same colonies. Spectral signatures of cells were extracted between 450 – 800 nm from HMI collected with 100x objective. A quadratic discriminant analysis (QDA) was used to classify cells as either Salmonella positive or negative (n = 341). Spectra preprocessing minimized the influence of cellular shape on the spectra, increasing the initial classification accuracy of 81.8% to 98.5%, yielding a sensitivity of 1.0, and a specificity of 0.963. Results showed the potential as an initial investigation of HMI as a microbial confirmation tool, compared to RT-PCR.

    关键词: Polymerase chain reaction,Salmonella,Food Safety,Hyperspectral microscope,Rapid detection

    更新于2025-09-10 09:29:36