修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

25 条数据
?? 中文(中国)
  • In vitro bioactivity and biocompatibility of femtosecond laser-modified Ti6Al4V alloy

    摘要: The present work investigates bioactivity and biocompatibility of femtosecond (fs) laser surface-modified Ti6Al4V alloy (Ti-alloy). Self-aligned conical surface features were generated on Ti-alloy when laser irradiated employing a Ti:sapphire pulsed fs laser of wavelength 800 nm. Modification of surface chemical composition resulting from fs-laser irradiation of Ti-alloy was examined using Grazing incidence X-ray diffraction (GIXRD) technique and micro-Raman spectroscopy. Sub-oxide phase of titanium was detected on Ti-alloy surface post-fs-laser irradiation leading to increased oxygen vacancies on sample surface. For in vitro bioactivity tests, untreated and fs-laser-treated samples were immersed in simulated body fluid for 2 weeks. Evidence of hydroxyapatite deposition on both untreated Ti-alloy, as well as, fs-laser-treated Ti-alloy surfaces after in vitro tests were provided by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), GIXRD, Fourier transform infrared spectroscopy (FTIR), and micro-Raman spectroscopy. Superior growth of HAP was observed on fs-laser-modified Ti-alloy surface in comparison with untreated surface. Biocompatibility of the laser-treated Ti-alloy was investigated by studying anchoring and growth of human osteosarcoma cell line (U2OS) on it. Using MTT assay technique in vitro cell viability and growth potential in the presence of untreated and laser-treated Ti-alloy samples were assessed. MTT test results demonstrated that, neither cell viability, nor growth were affected in the presence of either the untreated or laser-treated sample surfaces. In addition, in comparison with the untreated Ti-alloy surface, the fs-laser-treated Ti-alloy surface showed more efficient cellular attachment when examined under confocal microscope.

    关键词: Biocompatibility,Hydroxyapatite,Surface modification,Ti6Al4V alloy,Femtosecond laser,Bioactivity

    更新于2025-11-21 11:08:12

  • Comparative investigation into effects of ZrO <sub/>2</sub> and Al <sub/>2</sub> O <sub/>3</sub> addition in fluorapatite laser-clad composite coatings on Ti6Al4V alloy

    摘要: Composite coatings consisting of fluorapatite mixed with 20 wt% yttria (3 mol%) stabilized cubic phase zirconia (c-ZrO2, 3Y-TZP) or 20 wt% alumina (a-Al2O3) were deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system. The interface morphology, phase composition, micro-hardness and biological properties of the two coatings were examined and compared. The results showed that the fluorapatite/Al2O3 specimen underwent a greater inter-diffusion at the interface between the coating layer and the transition layer than the fluorapatite/ZrO2 specimen. During the cladding process, the ZrO2 and Al2O3 components of the coating were completely decomposed or underwent phase transformation. In addition, the fluorapatite was partially decomposed. For both specimens, the coating layers contained fluorapatite, CaF2 and CaTiO3 phases. The coating layer of the fluorapatite/ZrO2 specimen additionally contained TTCP, CaO, CaZrO3 and m-ZrO2 (monoclinic phase), while that of the fluorapatite/Al2O3 specimen contained b-TCP, CaAl2O4 and u-Al2O3. The average micro-hardness of the fluorapatite/ZrO2 coating layer (1300 HV) was approximately 200 HV higher than that of the fluorapatite/Al2O3 coating layer (1100 HV). Both specimens generated dense bone-like apatite following immersion in simulated body fluid for 3 days. In other words, both specimens had a good in vitro bioactivity. However, the fluorapatite/ZrO2 specimen showed a better initial attachment and spread of osteoblast-like osteosarcoma MG63 cells than the fluorapatite/Al2O3 specimen in in vitro biocompatibility tests performed for 24 h.

    关键词: Ti6Al4V,bioactivity,biocompatibility,alumina,laser cladding,Fluorapatite,zirconia

    更新于2025-09-23 15:23:52

  • Effect of laser shock processing on oxidation resistance of laser additive manufactured Ti6Al4V titanium alloy

    摘要: The high-temperature oxidation resistance of laser additive manufactured (LAM) Ti6Al4V before and after laser shock processing (LSP) was investigated. The samples were oxidized at 400?800 °C for 1?50 h in air. The results revealed that the rate of weight gain of the Ti6Al4V fabricated through LAM decreased, and LSP had a positive effect on increasing the oxidation resistance. At an oxidation temperature of 700 °C, an aluminum-rich layer was observed in the cross-section before LSP. After LSP, the aluminum-rich layer changed to three layers. The aluminum-rich layer prevented the diffusion of oxygen, which improved the oxidation resistance of the Ti6Al4V.

    关键词: Ti6Al4V titanium alloy,High-temperature oxidation resistance,Laser shock processing,Laser additive manufacturing

    更新于2025-09-23 15:21:01

  • Surface engineering of a titanium alloy for tribological applications by nanosecond-pulsed laser

    摘要: In many applications, surface engineering is needed in order to overcome the poor wear properties of titanium alloys. A fiber laser was used in different operation modes for remelting a Ti6Al4V surface and subsequently smoothing it again, resulting in a smooth, glossy and crack-free surface. The laser treated surface was characterized by tribological experiments, nanoindentation and (transmission) electron microscopy and compared to samples treated by plasma nitridation and thermal oxidation. All surface treatments improved the tribological behavior of Ti6Al4V to different extents. Nanoindentation measurements showed no strict correlation of mechanical properties and tribological behavior. It is hypothesized that apart from mechanical properties, binding of titanium electrons by interstitials plays a role in the occurrence or absence of adhesive wear.

    关键词: Titanium alloys,Surface engineering,Adhesive wear,Ti6Al4V

    更新于2025-09-23 15:21:01

  • Analysis of helium used as protective gas in Laser Metal Deposition of Ti6Al4V highly reactive material

    摘要: Laser Material Deposition (LMD) is an additive manufacturing near-net-shape process. Metal powder particles are molten by means of a laser heat source and added to a substrate creating geometries. This technology offers the possibility of generating coatings, repairing damaged high-added-value parts, and manufacturing components with complex 3D geometries. Many industrial sectors, including aerospace and die and mold industries, are interested in this process due to its capabilities and the wide range of materials that can be used with it. Previous works aimed to develop a protective gas module to be able to process highly reactive materials without the necessity of a complete inert atmosphere inside the machine. Additionally, the influence of a mixture of argon and helium on the LMD process for other non-highly reactive alloys was evaluated. Hence, the present work aims to broaden the understanding of how the combination of these two factors may affect the LMD process, combining these previous studies and evaluating the phenomenon for a highly reactive alloy like Ti6Al4V. The study involves the melt-pool temperature measurement and characterization of the deposited clads variating not only the composition of the protective gas but also the flow rates.

    关键词: LMD,Ti6Al4V,Helium,Titanium,Shielding gas,protective atmosphere,He,Laser Metal Deposition,Argon,Ar

    更新于2025-09-23 15:21:01

  • Single-step process of microstructural functionally graded Ti6Al4V by laser powder bed fusion additive manufacturing

    摘要: The objectives of this study are: (1) to verify whether using linear heat input alone is sufficient to predict the resulting microstructure of Ti6Al4V and (2) to demonstrate the potential of single-step process of functionally graded material using powder bed fusion. In laser powder bed fusion, linear heat input is defined as the ratio of laser power to scan speed. It is a key process variable that describes the unit energy input. Therefore, linear heat input has been extensively linked with the resulting microstructure. However, review of existing studies shows that when similar linear heat input was used, a marked difference in mechanical properties exists. Using proportionally changed laser power and scan speed in five zones, functionally graded specimens were fabricated in this study. All other parameters remain the same for these zones. Variation of microstructure and hardness across the five zones were obtained. This implies that linear heat input is not sufficient to determine the resulting microstructure and mechanical properties. The amplitude of laser power and scan speed has an effect on the resulting microstructure, so they need to be separately considered in future studies.

    关键词: Linear heat input,Functionally graded material,Ti6Al4V,Microstructure,Powder bed fusion

    更新于2025-09-23 15:21:01

  • Computational Assessment of Thermokinetics and Associated Microstructural Evolution in Laser Powder Bed Fusion Manufacturing of Ti6Al4V Alloy

    摘要: Although most of the near non-equilibrium microstructures of alloys produced by laser powder bed fusion (LPBF) additive manufacturing (AM) are being reported at a rapid rate, the accountable thermokinetics of the entire process have rarely been studied. In order to exploit the versatility of this AM process for the desired properties of built material, it is crucial to understand the thermokinetics associated with the process. In light of this, a three-dimensional thermokinetic model based on the finite element method was developed to correlate with the microstructure evolved in additively manufactured Ti6Al4V alloy. The computational model yielded the thermal patterns experienced at given location while building a single layer through multiple laser scans and a whole part through multiple layers above it. X-ray analysis of the resultant microstructure confirmed the presence of acicular martensitic (α′) phase of (002) texture within the build-plane. Computationally predicted magnitude of the thermal gradients within the additively manufactured Ti6Al4V alloy in different directions (X, Y, and Z) facilitated the understanding about the evolution of grain morphology and orientation of acicular martensite in prior β grains. The scanning electron microscopy observations of the alloy revealed the distinct morphology of phase precipitated within the martensitic phase, whose existence was, in turn, understood through predicted thermal history.

    关键词: Thermokinetics,Additive manufacturing,Microstructural evolution,Laser powder bed fusion,Ti6Al4V alloy

    更新于2025-09-23 15:21:01

  • The effects of growth TiO <sub/>2</sub> nanotubes on forged Ti <sub/>6</sub> Al <sub/>4</sub> V alloy and selectivelaser sintered Ti <sub/>6</sub> Al <sub/>4</sub> V alloy surfaces for environment and medical applications

    摘要: The paper describes the effect of growth TiO2 nanotubes on titanium surfaces by anodic oxidation for environmental and medical applications. The importance of the metallurgical state of TiAl6V alloy on the growing of TiO2 nanotubes by anodization will be highlighted. Starting from the possibility of obtaining the TiO2 nanotubes, the paper presents results on TiO2 nanotubes grown by electrochemical anodization method, using a solution containing HF 0,4% and having as electrodes, graphite as cathode and titanium alloy specimens obtained by two technologies: by cold plastic deformation as well as by additive manufacturing process SLS, as anode. So, the nanotubes were produced by anodization and analysed by scanning electron microscopy. The aim of this paper is to compare the electrochemical formation of TiO2 on the surface of both specimens knowing that the titanium alloys and its oxides are used in many biomedical and environmental applications, thus providing the importance of nanotubes and the fact that their properties open doors in these fields.

    关键词: medical applications,TiO2 nanotubes,environmental applications,anodic oxidation,Ti6Al4V alloy

    更新于2025-09-23 15:21:01

  • Laser printing of micro-electronic communication systems for smart implants applications

    摘要: Endow the implant with intrinsic communication system between sensors and actuators or between implant and patient is a key factor for its long-term success. The capacity of early diagnosis of failures and the ability to remedy them are necessary to minimize expensive complications and reducing revision procedures. Ti6Al4V is the most used titanium alloy for implant’s fabrication. In this sense, this work presents a promising approach to print communication systems by using laser technology, aiming integrate the smart components on titanium implants. Laser has been employed as a versatile tool to modify the surface in different ways, such as texturing, oxidizing and sintering. Silver wires have been printed on Ti6Al4V surface in order to conduct electrical current. To minimize current loss for the substrate, titanium oxide layer has been produced by different methods (laser and anodization). Laser sintering (LS) has been also compared to a conventional method (Hot-pressing- HP) to consolidate the silver powder into the cavities. In comparison to the conventional techniques, laser demonstrated to be a competitive approach to oxidizing the surface and also for consolidating the micro-wires on Ti6Al4V surface. Consequently, the micro-wires printed by laser approach presented satisfactory results in terms of electrical resistance, actuating as the conductor path for electrical current, with values of 0.0131 Ω, which is similar to the resistance of the wire printed in an insulator substrate.

    关键词: Ti6Al4V titanium alloy,Laser oxidation,Implants,Laser surface modification,Nd:YAG laser,Laser sintering

    更新于2025-09-23 15:21:01

  • Preparation method and underlying mechanism of MWCNTs/Ti6Al4V nanocomposite powder for selective laser melting additive manufacturing

    摘要: The fabrication of high-performance metal matrix nanocomposites is a new development direction in laser additive manufacturing (AM); however, the unique localized line-by-line and layer-by-layer forming process of AM has special requirements on the applicable powder materials for AM. The feedstock powder preparation is an important factor in laser AM, especially the CNTs/metal nanocomposite powder for selective laser melting (SLM) due to the agglomeration of the CNTs. This work focused on the preparation of multi-walled carbon nanotubes/Ti6Al4V (MWCNTs/TC4) nanocomposite powder for laser AM by a planetary ball-milling (PBM). The effect of ball-milling time on the characteristics of nanocomposite powder was studied and the underlying physical mechanism for powder preparation was disclosed. Three nanocomposite powders with milling time of 2 h, 4 h and 16 h were used for SLM processing to determine the optimal nanocomposite powders. The results showed that although the MWCNTs were dispersed uniformly in the matrix powder at increased milling time, severely plastic deformation of nanocomposite powder occurred with loss of its spherical shape. It was concluded that a ball-milling time of 4 h at a speed of 300 rpm was determined to achieve optimal nanocomposite powder for SLM. SLM processing of the nanocomposite powder demonstrated a smooth laser-powder interaction, yielding good metallurgical bonding of scanning tracks with previous tracks and relatively flat surface of samples. This work provided the significant reference to prepare high quality CNTs/metal nanocomposite powder for SLM, which has great potentials to fabricate high-performance metal matrix nanocomposite.

    关键词: Planetary ball milling,Selective laser melting,Ti6Al4V (TC4) powder,Multi-walled carbon nanotubes (MWCNTs),Powder characteristics

    更新于2025-09-23 15:19:57