修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

11 条数据
?? 中文(中国)
  • Nanostructured Transparent Conductive Electrodes for Applications in Harsh Environments Fabricated via Nanosecond Laser‐Induced Periodic Surface Structures (LIPSS) in Indium–Tin Oxide Films on Glass

    摘要: A self-organization phenomenon named laser-induced periodic surface structures (LIPSS) is utilized for pattern formation in indium–tin oxide (ITO) transparent conductive films coated on borosilicate glass. Stripe patterns with periodicities down to 175 nm are created by scanning the focused beam (30 μm spot diameter 1 e?2) of a nanosecond pulsed laser operating at 532 nm wavelength over ITO films. Highly ordered ITO-LIPSS are generated at a pulse duration of 6 ns, pulse frequencies between 100 and 200 kHz, pulse energies around 20 μJ, and laser spot scan speeds in the range of 50–80 mm s?1. Resulting nanopatterns are electrically conductive and feature improved optical transparency as well as stability against strong acids such as hydrochloric acid, sulfuric acid, and even aqua regia. The formation of mixed phases between ITO and silicon is considered to be the origin for the chemical robustness of laser patterned transparent conductive electrodes.

    关键词: laser-induced periodic surface structures (LIPSS),laser patterning,self-organization,indium–tin oxide (ITO),transparent conductive films (TCF)

    更新于2025-10-22 19:40:53

  • Characteristics of Ultrathin Ni Films

    摘要: Conductive and transparent ultra-thin Nickel films are grown by RF sputtering on fused silica substrates. The characteristics of Ni films (thickness, refractive index, and extinction coefficient) are obtained by fitting multi-angle spectrophotometric and ellipsometric data. Films thickness inferred by X ray reflection (XRR) measurements is in good accordance with ellipsometric results. XPS analysis reveals that Ni metal phase is present in the film surface together with Ni mixed oxide phases, which explains the high electrical stability of such films.

    关键词: optical measurements,ultrathin films,transparent conductive films,Ni films

    更新于2025-09-23 15:23:52

  • Transparent Conductive Materials (Materials, Synthesis, Characterization, Applications) || Metal Nanowires

    摘要: Metal nanowires are one-dimensional entities of metals of either single crystalline or polycrystalline nature [1]. Metal nanowires have attracted tremendous research attention since the last two decades, because of their important applications in plasmonics [2], electronics [3], electrocatalysis [4], and so on. In the past decade, researchers have attempted to coat metal nanowires on a transparent substrate as a transparent conductive ?lm (TCF) [5–7]. The visible light transparency and the conductivity of TCFs on the basis of metal nanowires have improved rapidly, being comparable with the performance of the state-of-the-art indium tin oxide (ITO) TCFs [8–10]. The recognition of the potential applications of metal nanowire TCFs stimulates research zeal for the synthesis of metal nanowires. So far, a range of metal nanowires have been synthesized, including Ag nanowires (AgNWs) [11], Au nanowires (AuNWs) [12], Cu nanowires (CuNWs) [13], and Pt nanowires [14]. Bicomponent metal nanowires, such as Cu@Ni [15], Ag@Au [16], Cu@Ag [17], Ag@Ni [18], and Cu@Pt [19] core@shell nanowires, have also been synthesized. These nanowires have been coated on a substrate to produce TCFs, and the performance has been characterized. At early stage of the research on metal nanowire TCFs, the transparency was lower than 80%, and the sheet resistance was as large as several kΩ to MΩ. Both experimental investigation and theoretical modeling have been extensively carried out to improve the performance of metal nanowire TCFs.

    关键词: Core@shell nanowires,Transparent conductive films,Plasmonics,Electronics,Au nanowires,Metal nanowires,Ag nanowires,Cu nanowires,Electrocatalysis

    更新于2025-09-23 15:21:21

  • The transmittance and sheet resistance of chemically and heat reduced graphene oxide film

    摘要: The graphene oxide (GO) sheets were prepared from Hummer’s method. The reduced process is important to graphene related materials for widely functional use in many photo-electric fields. Chemically and heat reduced treatment are carried out in this research and the electrical and optical properties of reduced GO films are measured. The size of GO sheets was examined by transmission electron microscopy with a size of about 5–6 μm. The chemically converted graphene (CCG) film are made by spin coating method. We used different GO concentration and different spin coating times to investigate the properties of graphene transparent conductive films. As the decrease of the GO concentration of solution and the times of spin coating, the transmittance is higher. The electrical property of the mixing of GO and CCG is more stable than the GO sheets only, this is discussed in this research and it is cause by the stacking condition of sheets. The conductivity of reduced graphene oxide film come from GO is lower than that come from CCG, we suppose that is because that the overlapping is less (i.e. film-forming ability) in the former, the transmittance and sheet resistance are 56 T% and 50 kohm/sq.

    关键词: Graphene oxide,Electrical property,Liquid-phase exfoliation,Transparent conductive films,Chemical reduced graphene oxide

    更新于2025-09-23 15:21:21

  • Effect of purification on the electrical properties of transparent conductive films fabricated from single-walled carbon nanotubes

    摘要: Transparent conductive films (TCFs) made of single-walled carbon nanotubes (SWCNTs) are usually fabricated using highly pure SWCNTs. Obtaining pure SWCNTs is an important step for harnessing their excellent electrical properties. Herein, we studied the effect of purification of SWCNTs by thermal and acid processes on the electrical properties of TCFs. These purification processes also affected the length and diameter of the SWCNT bundles. The purity of SWCNTs was determined by UV–visible-near-infrared spectroscopy and the metal content by thermogravimetric analysis. TCFs were made by spraying aqueous suspensions of SWCNTs having different purities onto polyethylene terephthalate substrates, and the ratios of dc to optical conductivities of the films were compared. Thermally purified (TP) SWCNT TCFs had a higher ratio than thermally and acid-purified (TAP) ones even though the purity of the TP-SWCNTs was lower than that of the TAP-SWCNTs. The conducting paths of the SWCNT bundle networks in the TP-SWCNT TCFs were well organized, because nanosized graphitic nanoparticles and metal catalysts occupied the spaces between the CNT bundles or networks without hindering the network connections. Although the SWCNT purity affected the conductivity of the SWCNT TCFs, the network property of lower junction resistance with smaller bundle diameter was more influential on film conductivity.

    关键词: Transparent conductive films,Film network morphology,Purification,Single-walled carbon nanotubes,Purity evaluation

    更新于2025-09-23 15:19:57

  • Structure-dependent performance of single-walled carbon nanotube films in transparent and conductive applications

    摘要: We investigate a complex relationship between structural parameters of single-walled carbon nanotubes (namely, mean length, diameter, and defectiveness) and optoelectrical properties (equivalent sheet resistance) of thin films composed of the nanotubes. We obtained a systematic dataset describing the influence of CO2 concentration and growth temperature. On the basis of the experimental results, we prove the high Raman peak ratio (IG/ID), length, and diameter of the nanotubes to decrease the equivalent sheet resistance of the nanotube-based film. The approach employed highlights the change in the nanotube growth mechanism at the temperature coinciding with the phase transition between α-Fe and γ-Fe catalyst phases. We believe this work to be of high interest for researchers working not only in the field of transparent and conductive films based on nanocarbons, but also for those who reveals the fundamentals of the nanotube growth mechanism.

    关键词: aerosol CVD,nanotube growth mechanism,optoelectronic properties,transparent conductive films,single-walled carbon nanotubes

    更新于2025-09-19 17:13:59

  • Machine Learning for Tailoring Optoelectronic Properties of Single-Walled Carbon Nanotube Films

    摘要: A machine learning technique, namely support vector regression, is implemented to enhance single-walled carbon nanotube (SWCNT) thin-film performance for transparent and conducting applications. We collected a comprehensive dataset describing the influence of synthesis parameters (temperature and CO2 concentration) on the equivalent sheet resistance (at 90% transmittance in the visible light range) for SWCNT films obtained by a semi-industrial aerosol (floating-catalyst) CVD with CO as a carbon source and ferrocene as a catalyst precursor. The predictive model trained on the dataset shows principal applicability of the method for refining synthesis conditions towards the advanced optoelectronic performance of multi-parameter processes such as nanotube growth. Further doping of the improved carbon nanotube films with HAuCl4 results in the equivalent sheet resistance of 39 Ω/□ – one of the lowest values achieved so far for SWCNT films.

    关键词: transparent conductive films,support vector regression,single-walled carbon nanotubes,optoelectronic properties,machine learning

    更新于2025-09-19 17:13:59

  • Fabrication of architectural structured polydopamine-functionalized reduced graphene oxide/carbon nanotube/PEDOT:PSS nanocomposites as flexible transparent electrodes for OLEDs

    摘要: High performance, flexible transparent conductive films with a structure similar to that of reinforced concrete and constructed by sandwiching single-walled carbon nanotubes (SWCNT) between poly (3,4-ethylene dioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) and polydopamine functionalized reduced graphene oxide (PDA-RGO) were fabricated using simple spray coating. Mussel-inspired polydopamine was introduced as a graphene oxide reducing agent and modifier; the obtained PDA-RGO improved the interfacial adhesion between the conductive coating layers and substrate, and an effective post fabrication treatment method was performed on the hybrid film to achieve better conductivity. It was found that the resulting electrode exhibited a low sheet resistance of 52.2 Ω/sq. with a high optical transmittance of 88.7% at 550 nm. Moreover, the transparent film exhibited long-term stability with a relatively low roughness (ca. 2.41 nm), and its architectural structure sustained the flexibility of the film during bending. The organic light emitting diodes which using PDA-RGO/SWCNT/PEDOT:PSS film as anode was successfully fabricated, the luminance of the device was 2032 cd/cm2 at 15 V and the maximum current efficiency was 2.13 cd/A at 14 V, indicating the strong potential of this type of transparent electrode for flexible electroluminescent devices.

    关键词: OLEDs,Polydopamine Functionalized Reduced Graphene Oxide,PEDOT:PSS,Flexible transparent conductive films,Carbon nanotubes

    更新于2025-09-16 10:30:52

  • Effect of annealing treatment on transparent and conductive hydrated magnesium-carbon films

    摘要: Transparent electronic technology has many urgent optoelectronic device applications. A key component of plasmonic materials in conventional semiconductors is the wide band gap of oxide thin films. Although transparent electronic materials have been developed for visible and near-infrared wavelengths, systems incorporating mid-infrared and far-infrared spectra are difficult to achieve. In this study, hydrated magnesium-carbon films, a new type of non-oxide transparent conductive thin films with a magnesium hydroxide structure, were generated using the three-step method. After annealing treatment, larger crystals in the thin films typically exhibited superior film resistivity, with conductivity values of approximately 8.63 × 10?3 Ω m. Due to the free electron concentration was not more than 1020 cm?3, the films demonstrated excellent optical properties, with plasma wavelength values of approximately 8 mm for infrared transmittance above 70%. After annealing, due to the Moss-Burstein (M-B) effect, the visible light transmittance was greater than 85% and the optical bandgap shifted towards the blue region. In addition, the influences of the sputtering power of the carbon target on the properties of hydrated magnesium-carbon film were also discussed in this paper.

    关键词: Transparent conductive films,Electrical properties,Magnetron sputtering,Hydrated magnesium-carbon films

    更新于2025-09-10 09:29:36

  • Synthesis of uniform silver nanowires from AgCl seeds for transparent conductive films via spin-coating at variable spin-speed

    摘要: Uniform silver nanowires (AgNWs) with high aspect ratio are significant to fabricate high-performance transparent conductive films (TCFs). In this work, AgNWs were synthesized through polyol method using AgCl as seeds. The growth mechanism of AgNWs upon AgCl particles was demonstrated, which provided a clear understanding of heterogeneous nucleation for synthesizing crystal. The amounts and the reaction time of AgCl were discussed to probe the effect on morphology of final AgNWs. Apart from that, the temperature was also tuned to provide appropriate thermal energy for synthesis of AgNWs. Uniform AgNWs with thin diameter about 52 nm and aspect ratio above 1000 were synthesized by optimizing the amounts, reaction time of AgCl and the temperature. These AgNWs were utilized to fabricate TCFs firstly through spin-coating at a variable speed. The resulting films coated at variable spin-speed largely improved the performance of films compared with those of films coated at constant spin-speed, exhibiting a low sheet resistance of 54Ω sq-1 and high transmittance of 92% at 550 nm with haze of 5.4%.

    关键词: growth,AgCl,Silver nanowires,transparent conductive films,spin-coating

    更新于2025-09-10 09:29:36