- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Welding of Dissimilar Steel/Al Joints Using Dual-Beam Lasers with Side-by-Side Configuration
摘要: Welding of dissimilar steel/Al lapped joints of 1.5 mm in thickness was carried out by using dual-beam laser welding with side-by-side configuration. The effect of the major process parameters including the dual-beam power ratio of (Rs) and dual-beam distance (d1) on the steel/Al joint characteristics was investigated concerning the weld shape, interface microstructures, tensile resistance and fracture behavior. The results show that dual-beam laser welding with side-by-side configuration produces soundly welded steel/Al lapped joints free of welding defects. The processing parameters of Rs and d1 have a great influence on the weld appearance, the weld penetration in the Al alloy side (P2) and the welding defects. Variation in the depth of the P2 and the locations at the Al/weld interface cause heterogeneous microstructures in the morphology and the thickness of the intermetallic compound (IMC) layers. In addition, electron back scattered diffraction (EBSD) phase mapping reveals that the IMC layer microstructures formed at the Al/weld interface include the needle-like θ-Fe4Al13 phases and compact lath η-Fe2Al5 layers. Some very fine θ-Fe4Al13 and η-Fe2Al5 phases generated along the weld grain boundaries of the steel/Al joints are also confirmed. Finally, there is a matching relationship between the P2 and the tensile resistance of steel/Al joints, and the maximum tensile resistance of 109.2 N/mm is obtained by the steel/Al joints produced at the Rs of 1.50 during dual-beam laser welding with side-by-side configuration. Two fracture path modes have taken place depending on the P2, and relatively high resistance has been achieved for the steel/Al joints with an optimum P2.
关键词: dual-beam laser welding,tensile resistance,side-by-side configuration,EBSD phase mapping,steel/Al joint
更新于2025-11-28 14:24:20
-
Effects of Substrate Preheating Temperatures on the Microstructure, Properties, and Residual Stress of 12CrNi2 Prepared by Laser Cladding Deposition Technique
摘要: The 12CrNi2 alloy steel powder studied in the present paper is mainly used to manufacture camshafts for nuclear power emergency diesel engines. Laser cladding deposition is of great signi?cance for the manufacture of nuclear power emergency diesel camshafts, which has the advantages of reducing material cost and shortening the manufacturing cycle. However, due to the extremely uneven heating of the components during the deposition process, a complex residual stress ?eld occurs, resulting in crack defects and residual deformation of the components. In the present paper, 12CrNi2 bulk specimens were prepared on the Q460E high-strength structural steel substrate at different preheating temperatures by laser cladding deposition technique, and a ?nite element residual stress analysis model was established to investigate the effects of different preheating temperatures on the microstructure, properties, and residual stress of the specimens. The results of the experiments and ?nite element simulations show that with the increase of preheating temperature, the content of martensite/bainite in the deposited layer decreases, and the ferrite content increases. The proper preheating temperature (150 ?C) has good mechanical properties. The residual stress on the surface of each specimen decreases with the increase of the preheating temperature. The longitudinal stress is greater at the rear-end deposition part, and the lateral residual stress is greater on both sides along the scanning direction.
关键词: substrate preheating,12CrNi2 alloy steel powder,residual stress,laser cladding deposition,microstructure and properties
更新于2025-11-28 14:24:20
-
Effect of beam wobbling on laser welding of aluminum and magnesium alloy with nickel interlayer
摘要: The influence of conventional laser keyhole welding and beam wobbling was evaluated at two weld travel speeds and power settings. Fracture in linear lap welds would occur during specimen preparation due to the presence of Al-rich brittle fusion zone, unless one utilizes a circular laser wobbling path (at 1000 Hz). Wobbling provided better integrity due to the presence of a Mg-rich ductile fusion zone and a larger bonded width. It can be concluded that laser beam wobbling enhances joint quality by widening the joint area and mitigating formation of brittle secondary phases at the joint fusion zone.
关键词: Aluminum,Magnesium,Interlayer,Laser welding,Beam wobbling,Microstructure
更新于2025-11-28 14:24:20
-
A statistical learning method for image-based monitoring of the plume signature in laser powder bed fusion
摘要: The industrial breakthrough of metal additive manufacturing processes mainly involves highly regulated sectors, e.g., aerospace and healthcare, where both part and process qualification are of paramount importance. Because of this, there is an increasing interest for in-situ monitoring tools able to detect process defects and unstable states since their onset stage during the process itself. In-situ measured quantities can be regarded as “signatures” of the process behaviour and proxies of the final part quality. This study relies on the idea that the by-products of laser powder bed fusion (LPBF) can be used as process signatures to design and implement statistical monitoring methods. In particular, this paper proposes a methodology to monitor the LPBF process via in-situ infrared (IR) video imaging of the plume formed by material evaporation and heating of the surrounding gas. The aspect of the plume naturally changes from one frame to another following the natural dynamics of the process: this yields a multimodal pattern of the plume descriptors that limits the effectiveness of traditional statistical monitoring techniques. To cope with this, a nonparametric control charting scheme is proposed, called K-chart, which allows adapting the alarm threshold to the dynamically varying patterns of the monitored data. A real case study in LPBF of zinc powder is presented to demonstrate the capability of detecting the onset of unstable conditions in the presence of a material that, despite being particularly interesting for biomedical applications, imposes quality challenges in LPBF because of its low melting and boiling points. A comparison analysis is presented to highlight the benefits provided by the proposed approach against competitor methods.
关键词: Process plume,Metal additive manufacturing,Laser powder bed fusion,Infrared imaging,In-situ monitoring,Zinc
更新于2025-11-28 14:24:20
-
Vibration parameters optimum of 316L steel laser welding under high frequency micro-vibration condition
摘要: High frequency micro vibration combined with laser was applied in the laser welding process parameters were chosen by comparison of weld geometry. In detail, laser power(P) is 2.5kW, welding speed(V) is 1.2m / min, defocusing amount(DA) is -5mm. Three parameters including frequency(F), vibration acceleration(A) and angle(θ) were changed according to the orthogonal test scheme. The microstructure and the tensile properties of the welded joint were compared and analyzed. The morphology of weld tail was analyzed to describe hole stability. It was found that micro-structure and mechanical of joint was significantly influenced by A and F. In the case of vibration resonance, the higher the F, the better the ultimate tensile strength(UTS), and the higher the hardness. When F was 1360 Hz, UTS was 602 MPa. When A was increased from 10 to 60 m/s2, the UTS was improved by 10 MPa. HW and HL were even disappeared in a higher resonance state. Response surface analysis results showed that factors of F and A have significant effects on the width of weld. Width was increased by higher resonance state. It was obtained that optimum process parameters were F=1360 Hz, A= 60 m/s2 and θ = 90°. UTS was 602MPa, hardness was 214.5 Hv, and elongation was 40%. This is mainly due to the grain refinement strengthening.
关键词: Laser welding,Mechanical property,Parameter,Response surface,Vibration
更新于2025-11-28 14:24:20
-
Numerical and experimental study on keyhole and melt flow dynamics during laser welding of aluminium alloys under subatmospheric pressures
摘要: Porosity defects was highly related to the keyhole and melt flow dynamic during laser welding process. In this paper, a novel 3D numerical model was developed to describe the keyhole dynamic and melt flow behaviors during laser welding of 5A06 aluminium alloy under subatmospheric pressures. The effect of ambient pressure on laser welding process was taken into consideration by optimizing the boiling point of aluminium alloy and recoil pressure of evaporated metallic vapor jets based on vapor–liquid equilibria calculation and Wilson equation. A moving hybrid heat source model was employed to describe the laser energy distribution under subatmospheric pressures. Numerical results indicated that a wider and deeper keyhole with less humps was produced under subatmospheric pressure comparing with that of atmospheric pressure. The vortices in the rear keyhole wall became unapparent or even disappeared with the decrease of ambient pressures. The melt flow velocity on the keyhole wall was larger under a lower pressure. A smaller difference between boiling point and melting point was produced and this led to the formation of a thinner keyhole wall and improved the stability of molten pool. Larger recoil pressure produced under subatmospheric pressure was responsible for the weakened vortices and enhanced melt flow velocity. Bigger keyhole opening size, larger melt flow velocity, thinner keyhole and the weakened vortices all resulted into the reduction of porosity defects during laser welding of aluminium alloys. Based on the simulation results, the plasma distribution, weld formation and porosity defects had been demonstrated. The compared results showed that the simulation results exhibited good agreements with the experimental ones.
关键词: Porosity defects,Keyhole stability,Numerical simulation,Subatmospheric pressure,Melt flow dynamic,Laser welding
更新于2025-11-28 14:24:20
-
Investigation of cut quality in fiber laser cutting of CFRP
摘要: Fiber laser cutting of CFRP sheets was investigated using a 2 kW multi-mode fiber laser, focusing on how the cut quality factors, such as kerf width, kerf depth, matrix evaporation width, matrix recession width, kerf taper angle, matrix damage zone, and cut surface morphology, change as laser power, laser scanning speed, and the number of laser passes are varied. By designing a systematic experiment on a large process window, several important parameters for kerf width, kerf depth, matrix evaporation width, and matrix recession width were identified, and using them, it was verified that the beam scanning speed is a dominant factor for minimizing thermal damages. Also, circular rings were observed in each carbon fiber at the cut surfaces, and it looked as if they were generated when each fiber was thermally fused in the radial direction. A larger number of laser passes was found to contribute to a smooth surface morphology, because of the formation of highly-fused surfaces, which prevents fiber delamination and pull-outs. Optimum process conditions were also identified by comparing various cut quality factors.
关键词: Fiber laser cutting,Optimal process conditions,Cut quality factors,Thermal damage,Carbon fiber reinforced plastic (CFRP)
更新于2025-11-28 14:24:20
-
Numerical and experimental investigation on microstructure and residual stress of multi-pass hybrid laser-arc welded 316L steel
摘要: In multi-layer welding, the interaction between the weld beads had a great impact on the performance of the overall joint. Therefore, experimental research and thermal-plastic analysis of 316L stainless steel multi-layer hybrid laser-arc welding were performed. The reasonable heat sources were proposed to simulate hybrid laser-arc welding (HLAW) and laser beam welding (LBW). The simulation results of temperature field and residual stress distribution were both validated and in accordance with experimental measurements. On this basis, Combining the simulated results with the metallurgical analysis, the microstructure of multi-layer weld was divided according to temperature histories. The formation mechanism of feathery ferrite precipitated in the re-melting zone (RZ) was analyzed. The feathery ferrite could increase the micro-hardness of the interlaminar position of weld. Moreover, the residual stress along the multi-layer weld thickness direction was simulated and X-ray diffraction (XRD) measured, which indirectly demonstrated the size and orientation variation of the grains in the RZ.
关键词: Residual stress,Microstructure,FE analysis,Hybrid laser-arc welding
更新于2025-11-28 14:24:20
-
Development of an Intra-Layer Adaptive Toolpath Generation Control Procedure in the Laser Metal Wire Deposition Process
摘要: Recently developed concentric laser metal wire deposition (LMWD) heads allow metal addition processes which are independent of the deposition direction, thus enabling complex paths to be generated. The sensitivity of the process to height deviations has experimentally been observed to be greater with this type of head than with powder ones, therefore requiring more precise and local process control algorithms to be implemented. This work developed a methodology for measuring the part, layer by layer, using a 3D scanner based on structured laser light. Height corrections were applied to the mean and intra-layer height deviations by recalculating the deposition trajectories of the next layer to be deposited. Local height deviations were adjusted by varying the scanning speed, thus increasing the feed rate in the lower areas and decreasing it in the higher ones. Defects generated in the purpose, with height differences within the layer, were successfully corrected. A flat layer was re-established through the application of the control strategy. The internal integrity of the parts due to the scanning speed variation was analyzed, resulting in fully dense parts. The structured light measurement and height correction systems are found to be an affordable and time-efficient solution that can be integrated into an LMWD environment, thereby improving the process robustness.
关键词: cladding,coaxial wire feed,metal wire,additive manufacturing,monitoring,laser deposition,structured light scanning,height control
更新于2025-11-28 14:24:20
-
Energy efficiency evaluation of metal laser direct deposition based on process characteristics and empirical modeling
摘要: Metal laser direct deposition (MLDD) is a typical process in additive manufacturing (AM), which permits the build of complex and fully dense metallic parts by using laser to melt the metal powder layer by layer. However, the process is characterized by high energy consumption and low energy efficiency. This paper established an empirical model to characterize the relationship between process parameters and energy efficiency for MLDD based on the essence of thermodynamics physical energy conversion. Additionally, a recognition method of cross-sectional profile of the deposited layer was achieved by adding tungsten carbide (WC) powder, which greatly improved the measurement reliability. Taguchi experiment and regression identification method were applied, and the relative error of the model was less than 10%. The results show that laser power has significant influence on the process energy efficiency of MLDD. The energy efficiency of single-track multi-layer stacking (SMS) process and multi-track single-layer lapping (MSL) process increased by 5.7% and 50.3%, respectively, under the optimal process parameter condition. The proposed model can be used effectively for the energy efficiency evaluation and offer the potential for improving the sustainability of MLDD.
关键词: Energy efficiency,Metal laser direct deposition (MLDD),Cross-sectional profile,Taguchi experiment
更新于2025-11-28 14:24:20