修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

78 条数据
?? 中文(中国)
  • Investigation of valence plasmon excitations in GMZO thin film and their suitability for plasmon-enhanced buffer-less solar cells

    摘要: The approach of eliminating buffer layer in conjunction with plasmon-enhanced transparent conduction oxide (TCO) layer is an attractive methodology to realize low-cost ultrathin buffer-less solar cells (SCs) by introducing plasmon-enhanced absorption and reduced fabrication steps. Here, we report a novel method to generate wide-band sputter-stimulated plasmonic feature in Ga-doped-MgZnO (GMZO) thin-films, which are observed due to the different metallic and metal-oxide nanoclusters formation. Through an extensive analysis of photoelectron spectroscopy, spectroscopic ellipsometry, and field-emission scanning electron microscope measurements the evaluation of plasmonic features and correlation of them with various nanoclusters inside GMZO thin-film is performed. Additionally, the suitability and expected performance of plasmon-enhanced GMZO thin-film based buffer-less SCs are probed through; 1) band-offset analysis at the plasmon enhanced-GMZO/CIGSe heterojunction; 2) simulation studies to analyze the effect of conduction band-offset (CBO) on the performance of the buffer-less SCs; 3) predicting the performance of the buffer-less SC using the parameters of GMZO thin-films with varying CBO, and 4) envisaging the concept of ultrathin buffer-less SC with calculated CBO and absorber layer thickness (300 nm) for ultrathin SCs. Moreover, at the experimentally calculated band-offset with ultrathin absorber layer thickness (300 nm), theoretically calculated buffer-less SC performance parameters estimated to be open-circuit voltage (Voc): 0.75 V, short-circuit current density (Jsc): 17.29 mA/cm2, fill-factor (FF): 80.5%, and efficiency (Eff): 10.46%.

    关键词: Ultrathin solar cells,UPS,CIGSe,Plasmons

    更新于2025-11-21 11:03:13

  • Investigation of valence electron excitation and plasmonic enhancement in sputter grown NMZO thin films: For energy harvesting applications

    摘要: We report a novel approach of sputter-stimulated plasmonic generation in Na-doped MgZnO (NMZO) thin films. Sputtering of material during film growth by utilizing secondary direct-coupled ion-source present in dual-ion beam sputtering system leads to the generation of nanoclusters of its constituent elements due to different sputtering-out rates of various elements present in the films. The authentication of plasmonic generation in NMZO is conducted as follows a) identification of plasmonic signature in electron energy loss spectra obtained by ultraviolet photoelectron spectroscopy measurement, b) valence bulk, valence surface, and particle plasmon resonance energy calculations are performed, and each plasmon peak is indexed with corresponding plasmon energy peak of different nanoclusters, and c) spectroscopic ellipsometric measurement is deployed to verify plasmonic behavior by investigating different optical properties. Additionally, incorporation of the plasmonic feature along with alkali metals plays a crucial role in the improvement of the performance of solar cells. Therefore, plasmon enhanced NMZO as a backscattering layer in between CIGSe/back contact is probed to ascertain the additional benefits of 1) Na incorporation into the absorber layer as a result of the Na diffusion from the NMZO layer, and 2) improvement in the morphology of the CIGSe thin film with the incorporation of NMZO layer in between the back-contact and CIGSe. The diffusion of Na into the absorber layer is probed by deploying secondary ion mass spectroscopy measurements, and improvement in the morphology of CIGSe with the incorporation of NMZO layer between the back-contact/absorber is investigated using field-emission scanning electron microscope analysis.

    关键词: UPS,NMZO,Ultrathin solar cells,Plasmons,Sputtered

    更新于2025-11-21 11:03:13

  • Spectrophotometric Characterization of Thin Copper and Gold Films Prepared by Electron Beam Evaporation: Thickness Dependence of the Drude Damping Parameter

    摘要: Copper and gold films with thicknesses between approximately 10 and 60 nm have been prepared by electron beam evaporation and characterized by spectrophotometry from the near infrared up to the near ultraviolet spectral regions. From near normal incidence transmission and reflection spectra, dispersion of optical constants have been determined by means of spectra fits utilizing a merger of the Drude model and the beta-distributed oscillator model. All spectra could be fitted in the full spectral region with a total of seven dispersion parameters. The obtained Drude damping parameters shows a clear trend to increase with decreasing film thickness. This behavior is discussed in the context of additional non-optical characterization results and turned out to be consistent with a simple mean-free path theory.

    关键词: optical constants,gold,copper,ultrathin metal films,thickness dependence

    更新于2025-11-21 11:01:37

  • Reconstructing Dual‐Induced {0 0 1} Facets Bismuth Oxychloride Nanosheets Heterostructures: An Effective Strategy to Promote Photocatalytic Oxygen Evolution

    摘要: Sunlight-driven photocatalytic water splitting to generate oxygen (O2) is a promising approach for utilizing solar energy. Herein, direct Z-scheme heterostructure photocatalysts composed of ultrathin Bi3O4Cl and BiOCl nanosheets are rationally fabricated via alkaline chemical etching and solvent exfoliation for O2 evolution under visible light. With AgNO3 and FeCl3 as the electron scavenger, the optimized ultrathin Bi3O4Cl/BiOCl exhibits prominent photocatalytic activity for O2 production under visible-light illumination and the production rate (58.6 μmol g?1 h?1) is much higher than the nanocrystal heterostructure (28.5 μmol g?1 h?1). This ultrathin heterostructure system can efficiently transfer the electrons, which leads to a considerable improvement in the photocatalytic performance. Due to the suitable band edge potentials and the intense electronic interaction between two-dimensional (2D) Bi3O4Cl and 2D BiOCl, as confirmed by theoretical computations, photoluminescence, and photoelectricity tests, the ultrathin heterojunction with an internal electric field has a highly remarkable charge transfer. The intimate interface contact and {0 0 1} facets effect promote the high photocatalytic performance of the ultrathin Bi3O4Cl/BiOCl heterostructure.

    关键词: remarkable charge transfer,ultrathin Bi3O4Cl/BiOCl heterostructure,facets effect,photocatalysis

    更新于2025-11-19 16:51:07

  • Thinning ferroelectric films for high-efficiency photovoltaics based on the Schottky barrier effect

    摘要: Achieving high power conversion efficiencies (PCEs) in ferroelectric photovoltaics (PVs) is a longstanding challenge. Although recently ferroelectric thick films, composite films, and bulk crystals have all been demonstrated to exhibit PCEs >1%, these systems still suffer from severe recombination because of the fundamentally low conductivities of ferroelectrics. Further improvement of PCEs may therefore rely on thickness reduction if the reduced recombination could overcompensate for the loss in light absorption. Here, a PCE of up to 2.49% (under 365-nm ultraviolet illumination) was demonstrated in a 12-nm Pb(Zr0.2Ti0.8)O3 (PZT) ultrathin film. The strategy to realize such a high PCE consists of reducing the film thickness to be comparable with the depletion width, which can simultaneously suppress recombination and lower the series resistance. The basis of our strategy lies in the fact that the PV effect originates from the interfacial Schottky barriers, which is revealed by measuring and modeling the thickness-dependent PV characteristics. In addition, the Schottky barrier parameters (particularly the depletion width) are evaluated by investigating the thickness-dependent ferroelectric, dielectric and conduction properties. Our study therefore provides an effective strategy to obtain high-efficiency ferroelectric PVs and demonstrates the great potential of ferroelectrics for use in ultrathin-film PV devices.

    关键词: power conversion efficiency,Schottky barrier effect,ferroelectric photovoltaics,PZT ultrathin film,depletion width

    更新于2025-11-14 17:28:48

  • Ultrathin and Isotropic Metal Sulfide Wrapping on Plasmonic Metal Nanoparticles for SERS-based Detection of Trace Heavy Metal Ions.

    摘要: A facile and general strategy is presented for homogenous and ultrathin metal sulfide-wrapping on plasmonic metal (PM) nanoparticles (NPs) based on a thiourea-induced isotropic shell growth. This strategy is typically implemented just via adding the thiourea into pre-formed PM colloidal solutions containing target metal ions. The validity of this strategy is demonstrated by taking the wrapped NPs with Au core and CuS shell or Au@CuS NPs as an example. They are successfully fabricated via adding the thiourea and Cu2+ solutions into pre-formed Au NP colloidal solution. The CuS shell layer is highly homogenous (<10% in relative standard deviation of shell thickness), regardless of the NPs’ shape or curvature. The shell thickness can be controlled from tens down to 0.5 nm just by the addition amounts of the shell precursors. The formation of the shell layer on the Au NPs can be attributed to the alternative deposition of Cu2+ and S2- ions on the thiourea-modified surface of Au NPs in the solution, which induces the isotropic shell growth. Further, this strategy is of good universality. Many other sulfide-wrapped PM NPs, such as Ag@CuS, Au@PtS2, Au@HgS, Ag@Ag2S NPs and Ag@CuS nanorods have been successfully obtained with homogeneous and ultrathin shells. Importantly, such ultrathin sulfide-wrapped PM NPs can be used for SERS-based detection of trace heavy metal ions with strong anti-interference via ion exchange process between the metal sulfide shell and heavy metal ions. This study provides a simple and controllable route for wrapping the homogenous and ultrathin sulfide layers on the PM NPs, and such wrapped NPs have good practical applications in the SERS-based detection of trace heavy metal ions.

    关键词: Plasmonic metal nanoparticles,Trace heavy metal ions,Ultrathin sulfide wrapping,Thiourea-induced isotropic shell growth,SERS-based detection

    更新于2025-11-14 17:04:02

  • High Efficiency Non‐Doped White Organic Light Emitting Diodes Based on a Bilayer Interface‐Exciplex Structure

    摘要: High efficiency non-doped blue and white organic light emitting diodes (OLEDs) are realized by using a bilayer interface-exciplex (i-Exc) structure. Since the neutral exciplex are formed at the interface, the interface charge accumulation is reduced, thereby suppressing exciton quenching in the device. With the i-Exc structure, a maximum external quantum efficiency (EQE) of 23.1% is achieved in the non-doped blue phosphorescent OLED. Moreover, the white emission can be obtained by inserting an ultrathin orange-red phosphorescent emitter into the blue devices. The charge trapping in the orange-red emitter can be suppressed by adjusting the position of the ultrathin orange-red emitting layer in the device, contributing to superior spectral stability. The WOLED achieves an EQE of 20.0% and exhibits a stable warm white emission. The Commission Internationale de l’Eclairage (CIE) coordinates of WOLED are (0.41, 0.40) at 5 V and slightly change to (0.40, 0.41) at 9 V.

    关键词: interface-exciplex,PHOLED,WOLED,bilayer structure,ultrathin non-doped emitting layers

    更新于2025-11-14 15:26:12

  • Enhanced Oxidation Stability of Transparent Copper Films Using a Hybrid Organic-Inorganic Nucleation Layer

    摘要: We report a novel seed layer for the formation of slab-like transparent copper films on glass and plastic substrates, based on a mixed molecular monolayer and an ultra-thin (0.8 nm) aluminium layer both deposited from the vapour phase, which substantially outperforms the best nucleation layer for optically thin copper films reported to date. Using this hybrid layer, the metal percolation threshold is reduced to < 4 nm nominal thickness and the long-term stability of sub-10 nm films towards oxidation in air is comparable to that of silver films of the same thickness fabricated using the best reported seed layer for optically thin silver films to date. The underlying reason for the remarkable effectiveness of this hybrid nucleation is elucidated using a combination of photoelectron spectroscopy, small angle X-ray studies, atomic force microscopy and transmission electron microscopy.

    关键词: ultrathin metal film,nucleation,transparent electrode,seed layer,passivation,copper

    更新于2025-10-22 19:40:53

  • Design and fabrication of the ultrathin metallic film based infrared selective radiator

    摘要: Selective radiators have received considerable research attention and been extensively applied in many areas, such as thermophotovoltaic systems, infrared cloaking and sensing. Herein, the design of the infrared selective radiator based on ultrathin metallic films was fully demonstrated. From the discussions on the radiative characteristic and growth law of the metallic film, it has been concluded that a continuous ultrathin metallic film can behave as a thermal radiation enhancer. Taking the radiative cooling technology as the application background, a multilayered broadband selective radiator, consisting of an ultrathin Ag film and dielectric Ge films is designed and fabricated. The proposed radiator, which can radiate selectively in the 8–13 μm atmospheric transparency window (ε5–8 μm = 0.21; ε8–13 μm = 0.84; ε13–25 μm = 0.39), achieves an average temperature reduction of 3.5 °C under outdoor conditions and exhibits potential application in radiative cooling technology. Moreover, for our proposed selective radiator, flexible tuning of radiative characteristics can be achieved via structural design, which paves the way for its application in various areas. Unlike the common metamaterial based thermal radiator, our selective radiator with a planar structure is free from the complicated process of lithography or etching and is scalable to realize large-area fabrication and application.

    关键词: Structural design,Radiative cooling,Selective radiator,Ultrathin metallic film

    更新于2025-09-23 15:23:52

  • Characteristics of Ultrathin Ni Films

    摘要: Conductive and transparent ultra-thin Nickel films are grown by RF sputtering on fused silica substrates. The characteristics of Ni films (thickness, refractive index, and extinction coefficient) are obtained by fitting multi-angle spectrophotometric and ellipsometric data. Films thickness inferred by X ray reflection (XRR) measurements is in good accordance with ellipsometric results. XPS analysis reveals that Ni metal phase is present in the film surface together with Ni mixed oxide phases, which explains the high electrical stability of such films.

    关键词: optical measurements,ultrathin films,transparent conductive films,Ni films

    更新于2025-09-23 15:23:52