修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Effect of substrate bias and substrate/plasma generator distance on properties of a-C:H:SiOx films synthesized by PACVD

    摘要: In this paper the a-C:H:SiOx films were synthesized on silicon (100) and glass substrates by plasma-assisted chemical vapor deposition combined with pulsed bipolar substrate bias from mixtures of argon and polyphenylmethylsiloxane vapor. The process of a-C:H:SiOx films formation was investigated by controlling processing conditions such as amplitude of negative pulse of substrate bias and the distance between the substrate and plasma generator. Physico-mechanical characteristics of a-C:H:SiOx films were studied by the nanoindentation technique, atomic force microscopy, Fourier transform infrared and Raman spectroscopy. The contact angle and surface free energy were determined by the sessile drop method using couple liquids (water and glycerin). It was found that the films’ properties are interrelated with the density of the ion current on the substrate, which was measured using a guarded planar probe. The obtained results show that film prepared at the smaller substrate/plasma generator distance and optimal substrate biasing has a higher content of sp3 bonded carbon and, accordingly, has higher hardness, Young's modulus and resistance to plastic deformation. At the same time the a-C:H:SiOx films show large hydrophobicity with a contact angle for water of about 91° and small total surface free energy of about 17.9 mN/m.

    关键词: a-C:H:SiOx films,PACVD,Raman Spectroscopy,Substrate bias,Fourier Transform Infrared Spectroscopy,Wettability

    更新于2025-09-23 15:21:21

  • Effect of precursor flow rate on physical and mechanical properties of a-C:H:SiO <sub/><i>x</i> </sub> films deposited by PACVD method

    摘要: In this paper the deposition of a-C:H:SiOx films by plasma activated chemical vapour deposition in a mixture of argon and polyphenylmethylsiloxane (PPMS) vapor with the impulse bipolar bias voltage applied to the substrate is presented. The paper discusses the dependence of the physico-mechanical properties of the deposited films on the flow rate of the PPMS precursor. The structure of the deposited films was determined by Fourier transform infrared spectroscopy and Raman spectroscopy. Mechanical properties characterization of a-C:H:SiOx films (hardness and elastic modulus) was made using the nanoindentation method. Hardness and elastic modulus were used to evaluate the endurance capability (H/E) and resistance to plastic deformation (H3/E2). The elastic recovery was calculated based on loading and unloading curves. It is shown that with an increase in the PPMS flow rate in the range of 35-287 μl/min, the films deposition rate increases from 17 to 221 nm/min. At this films mechanical properties, such as hardness, elastic modulus and elastic recovery did not deteriorate. The maximum values of the endurance capability and resistance to plastic deformation are obtained at a flow rate of 175 μl/min and equal to 0.12 and 203 MPa, respectively.

    关键词: PPMS,a-C:H:SiOx films,PACVD,mechanical properties,nanoindentation

    更新于2025-09-09 09:28:46