修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

32 条数据
?? 中文(中国)
  • Coordination Nanosheets of Phthalocyanine as Multifunctional Platform for Imaging-Guided Synergistic Therapy of Cancer

    摘要: “All-in-one” nanodrugs integrating various functionalities into one nanosystem are highly desired for cancer treatment. Coordination nanosheets as one type of two dimensional (2D) nanomaterials offer great opportunities, but lack of enough candidates. Here, a new kind of coordination nanosheets based on phthalocyanine are constructed. Manganese phthalocyanine (MnPc) tetracarboxylic acid is employed as photoactive ligand to form MnPc nanosheets; meanwhile, hyaluronic acid (HA) is coated on their surface. The obtained MnPc@HA nanosheets exhibit superior near infrared (NIR) photothermal effect with photothermal conversion efficiency of 72.3%, much higher than previously reported photothermal agents. Due to their 2D nanostructures, MnPc@HA nanosheets possess superhigh drug loading capacity for chemotherapy drug curcumin. With HA as a targeting group, the nanosheets selectively accumulated in CD-44 overexpressed tumors, followed by drug release under the control of NIR light. Moreover, MnPc@HA nanosheets with intrinsic paramagnetism can serve as T1 contrast agent for magnetic resonance imaging. The synergistic effect of phototherapy and chemotherapy endows curcumin loaded MnPc@HA nanosheets with superior tumor-eradicating efficacy. Besides, MnPc@HA nanosheets are biocompatible and safe for biomedical applications. This work provides novel insight for developing new multifunctional platforms based on 2D coordination nanosheets to synergistically combat cancer.

    关键词: theranostics,drug delivery,2D nanomaterials,photothermal therapy,cancer therapy

    更新于2025-09-19 17:15:36

  • Fabrication of dopamine enveloped WO3?x quantum dots as single-NIR laser activated photonic nanodrug for synergistic photothermal/photodynamic therapy against cancer

    摘要: Tungsten oxide is a promising nanodrug in phototherapy via transforming light energy to reactive oxygen species and heat. Nevertheless, the phototherapeutic activity of the tungsten oxide nanomaterials is generally activated under 980 nm laser, which is close to the absorption of normal tissue, resulting in unfavorable heating effect on normal tissues. Therefore, the tungsten oxide nanomaterials which can be excited under 808 nm are highly required to avoid overheating and obtain deep tissue penetration of near-infrared (NIR) laser. Here, we successfully synthesized a novel dopamine enveloped tungsten oxide nanodots (WO3?x/Dpa-Mel NPs) via facile one-step solvothermal route, using dopamine as the template and reductant in triethylene glycol solvent. Under the 808 nm laser irradiation, the as-obtained WO3?x/Dpa-Mel NPs exhibit excellent photodynamic activity and stability. Meanwhile, the WO3?x/Dpa-Mel NPs also possess high photothermal conversion property. Thus, the photothermal therapy (PTT) and photodynamic therapy (PDT) can be triggered simultaneously under single 808 nm laser irradiation. Additionally, the inherited good biocompatibility and dispersity in aqueous solution from dopamine hydrochloride (Dpa-Mel) also make the WO3?x/Dpa-Mel NPs more suitable for in vivo application. The as-obtained WO3?x/Dpa-Mel NPs exhibit an excellent synergistic phototherapy effect on solid tumor ablation in vivo without damaging healthy tissues under single 808 nm NIR light irradiation, indicating WO3?x/Dpa-Mel NPs can serve as a multifunctional therapeutic nanoplatform to realize the synergistic cancer therapy.

    关键词: Photothermal therapy,Combined cancer therapy,Tungsten oxide,Photodynamic therapy

    更新于2025-09-19 17:13:59

  • Erythrocyte membrane nano-capsules: biomimetic delivery and controlled release of photothermala??photochemical coupling agents for cancer cell therapy

    摘要: Photothermal therapy (PTT), which involves an increase in temperature triggered only by light signals at tumor sites to remove cancer cells, has been considered an attractive strategy in cancer therapy. Nevertheless, the in vivo applications of photosensitizer-based PTT are limited due to the poor biocompatibility of photothermal agents. Employing red blood cell (RBC) membranes to encapsulate photothermal agents can solve this issue, but the extra surface coating will suppress heat dissipation, which is unfavorable for the subsequent treatment. Herein, biomimetic nano-capsules have been fabricated for light signal-activated cancer therapy by encapsulating photocatalyst titanium dioxide colloid and photothermal agent gold nanorods (Au NRs) in erythrocyte membrane vesicles. The fabricated Au/TiO2@RBC nano-capsules can achieve the controlled release of Au NRs upon the photocatalytic degradation of their surface cell membrane coatings, and generate therapeutic signals after the released Au NRs are irradiated by an NIR laser. Meanwhile, the reactive oxygen species (ROS) produced by photocatalysis are helpful for killing tumor cells photodynamically. Thus, the biomimetic nano-capsules prepared herein will contribute to the research and development in cancer cell therapy.

    关键词: cancer therapy,titanium dioxide,red blood cell membranes,biomimetic nano-capsules,gold nanorods,Photothermal therapy

    更新于2025-09-19 17:13:59

  • Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered delivery of functional proteins

    摘要: Functional proteins are essential for the regulation of cellular behaviors and have found growing therapeutic uses. However, low bioavailability of active proteins to their intracellular targets has been a long-standing challenge to achieve their full potential for cell reprogramming and disease treatment. Here we report mesoporous polydopamine (mPDA) with a built-in plasmonic nanoparticle core as a multifunctional protein delivery system. The mPDA with a unique combination of large surface area, metal-chelating property, and broad-spectrum photothermal transduction allows efficient loading and near-infrared light-triggered release of functional proteins, while the plasmonic core serves as a photostable tracer and fluorescence quencher, collectively leading to real-time monitoring and active cytosolic release of model proteins. In particular, controlled delivery of cytotoxic ribonuclease A has shown excellent performance in in-vivo cancer therapy. The possibility of coating mPDA on a broad range of functional cores, thanks to its universal adhesion, provides opportunities for developing tailored delivery carriers of biologics to overcome intrinsic biological barriers.

    关键词: cancer therapy,photothermal-responsive,traceable protein delivery,plasmonic nanostructures,mesoporous polydopamine

    更新于2025-09-19 17:13:59

  • Sustained photodynamic effect of single chirality-enriched single-walled carbon nanotubes

    摘要: Semiconducting single-walled carbon nanotubes (s-SWNTs) are capable of fluorescence emission as well as photothermal and photodynamic actions, resulting from their near-infrared (NIR) absorptions corresponding to their S11 and S22 transitions. Here, we show that one chiral s-SWNTs, (6,4)-SWNTs, photogenerates all three of the major reactive oxygen species, i.e., singlet oxygen (1O2), superoxide anion (O2?–), and hydroxyl radical (?OH), in a sustainable manner. Its efficiency for ?OH generation is dramatically higher than those of the other two chiral s-SWNTs tested, as well as a clinical NIR dye. This sustained and relatively high photodynamic effect in (6,4)-SWNTs is due to their extraordinary high photostability and relatively high generation efficiency of their triplet excited state. In the colloidal stabilization of (6,4)-SWNTs under physiological conditions, a serum protein consisting of a tandem repeat of amphiphilic a -helices is found to be useful for dispersion. The protein-coated (6,4)-SWNTs are capable of effectively ablating cancer cells and disintegrating amyloid beta peptide aggregates through sustained photodynamic action.

    关键词: Single-walled carbon nanotubes,Photodynamic effect,Cancer therapy,Reactive oxygen species,Photostability,Amyloid beta peptide

    更新于2025-09-19 17:13:59

  • Tumor-targeting multi-shelled hollow nanospheres as drug loading platforms for imaging-guided combinational cancer therapy

    摘要: In this work, we developed multi-shelled hollow nanospheres [RGD@am-ZnO@CuO@Au@DOX HNSs] as multifunctional therapeutic agents to achieve effective and targeted Zn2+/Cu2+ therapy, induced drug delivery under low pH/red-light conditions, and enhanced phototherapy under single red-light. The photothermal and photodynamic performance of am-ZnO@CuO@Au HNSs was enhanced relative to that of am-ZnO nanoparticles (NPs) or am-ZnO@CuO HNSs by utilizing the resonance energy transfer process and broad red-light absorption. The pH-sensitive am-ZnO@CuO@Au HNSs were dissolved to Zn2+/Cu2+ in the acidic endosomes/lysosomes of cancer cells, resulting in a cancer cell killing effect. The release performance of doxorubicin (DOX) from RGD@am-ZnO@CuO@Au@DOX HNSs was evaluated under low pH and red-light-irradiated conditions, and targeting of HNSs was confirmed by dual-modal imaging (magnetic resonance/fluorescence) of the tumor area. Moreover, in vivo synergistic therapy using RGD@am-ZnO@CuO@Au@DOX HNSs was further evaluated in mice bearing human pulmonary adenocarcinoma (A549) cells, achieving a remarkable synergistic antitumor effect superior to that obtained by monotherapy. This study validated that RGD@am-ZnO@CuO@Au@DOX HNSs can be a promising candidate for efficient postoperative cancer therapy.

    关键词: cancer therapy,Zn2+/Cu2+ therapy,doxorubicin,phototherapy,multi-shelled hollow nanospheres

    更新于2025-09-16 10:30:52

  • Photoacoustic Imaging Quantifies Drug Release from Nanocarriers via Redox Chemistry of Dye‐Labeled Cargo

    摘要: There have been remarkable advances in imaging drug nanocarriers, but there are few real-time imaging strategies to determine if the cargo has been released from the carrier. This is important because the pharmacokinetics and pharmacodynamics of the carrier can often be dramatically decoupled from that of the cargo. Thus, new tools are clearly needed to image the timing and quantity of drug release from nanocarriers. Here, we describe a simple strategy for photoacoustic monitoring of drug release based on the redox chemistry of methylene blue, which offers predictable redox chemistry: It can transition from the oxidized state with a bright blue color and robust photoacoustic signal to the reduced state that the transparent with no photoacoustic signal. We locked this drug-dye conjugate into a reduced state inside of a nanoparticle with no photoacoustic signal. As the drug is released from the carrier, the dye is oxidized for quantification with photoacoustic imaging. We first prepared paclitaxel-methylene blue conjugate (PTX-MB) with strong absorbance at 640 nm and photoacoustic intensity proportional to its concentration. This cargo was co-encapsulated in a poly(lactic-co-glycolic acid) nanoparticle with a dithiothreitol reducing agent. The IC50 of PTX-MB-loaded NPs (PTX-MB @ PLGA NPs) was 78 μg mL-1. We then used the redox reaction of PTX-MB to monitor its release from poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). In vitro drug-release in phosphate buffer saline with 20% v/v normal mice serum showed a 670-fold increase in photoacoustic signal. The particles showed an initial burst release (25%) during the first 24 hours. After 24 hours, a sustained release was observed through 120 hours leading to cumulative release of 40.6% of PTX-MB. In vivo drug release study in mice for a duration of 12 hours showed a photoacoustic signal enhancement of up to 649% after 10 hours. We then used this system to treat an orthotopic model of colon cancer via luciferase-positive CT26 cells. Our data showed that tumor burden decreased by 44.7% ± 4.8% when treated with the PTX-MB @ PLGA NPs versus the empty PLGA carrier. This work presents a direct strategy to simultaneously monitor drug release biodistribution.

    关键词: Photoacoustic imaging,Paclitaxel,Image-guided drug delivery,PLGA nanoparticles,Drug-release,Cancer therapy,in vivo monitoring

    更新于2025-09-16 10:30:52

  • Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system <i>in vivo</i>

    摘要: Curcumin, a commonly used natural product for antitumor therapy, is unable to achieve full potential due to poor bioavailability. Based on our previous report of a novel delivery system for curcumin using functionalized single-walled carbon nanotubes by phosphatidylcholine and polyvinylpyrrolidone (SWCNT-Cur), we further evaluated SWCNT-Cur’s performance in vivo and characteristics in vitro. SWCNT-Cur significantly increased the blood concentration of curcumin, up to 18-fold, in mice. And in a murine S180 tumor model, SWCNT-Cur exhibited significantly higher inhibition efficacy on tumor growth and no obvious toxicity in main organs. Moreover, photothermal therapy induced by SWCNT under near-infrared radiation further facilitated SWCNT-Cur to inhibit the tumor growth in vivo. In addition, solvent residue is negligible in SWCNT-Cur formulation, and hydrogen bonding was formed between void carriers and curcumin, as demonstrated by GC chromatograph and IR spectra. Furthermore, experiments of confocal microscopy and spectrofluorometer showed that SWCNT-Cur gave a six-fold higher uptake for curcumin compared to native curcumin in human prostate cancer PC-3 cells. In conclusion, curcumin delivery with functionalized SWCNT is a promising strategy to enhance anticancer activity in vivo by enhancing cell uptake and blood concentration, changing physicochemical properties of curcumin and combining phototherapeutic with chemotherapeutic effects.

    关键词: cancer therapy,Curcumin,nanocarriers,single-walled carbon nanotubes,photothermal effect

    更新于2025-09-16 10:30:52

  • Biocompatible Chitosan-Carbon Nanocage Hybrids for Sustained Drug Release and Highly Efficient Laser and Microwave Co-irradiation Induced Cancer Therapy

    摘要: Graphitic carbon nanocages (GCNCs) are unique graphene-based nanomaterials that can be used for cancer photothermal therapy (PTT). However, low toxicity GCNC-based organic/inorganic hybrid biomaterials for microwave irradiation assisted PTT have not yet been reported. In the present study, chitosan (CS)-coated GCNCs (CS-GCNCs) loaded with 5-fluorouracil (5Fu) were used for cancer therapy when activated by 808-nm laser and microwave co-irradiation. The cytotoxicity of GCNCs was significantly reduced after coating with CS. For example, fewer cell-cycle defects were caused by CS-GCNCs in comparison with non-coated GCNCs. The release rate of 5Fu from CS-GCNCs was significantly slower than that of 5Fu from GCNCs, providing sustained release. The release rate could be accelerated by 808-nm laser and microwave co-irradiation. The 5Fu in CS-GCNCs retained high cancer cell killing bioactivity by enhancing the caspase-3 expression level. The cancer cell killing and tumor inhibition efficiencies of the 5Fu-loaded nanomaterials increased significantly under 808-nm laser and microwave co-irradiation. The strong cell killing and tumor ablation activities were due to the synergy of the enhanced GCNC thermal effect caused by laser and microwave co-irradiation and the chemotherapy of 5Fu. Our research opens a door for the development of drug-loaded GCNC-based nano-biomaterials for chemo-photothermal synergistic therapy with the assistance of microwave irradiation.

    关键词: sustained drug release,cancer therapy,low cytotoxicity,Graphitic carbon nanocages,laser microwave co-irradiation

    更新于2025-09-12 10:27:22

  • Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window

    摘要: Graphene quantum dots (GQDs) are considered emerging nanomaterials for photothermal therapy (PTT) of cancer due to their good biocompatibility and rapid excretion. However, the optical absorbance of GQDs in shorter wavelengths (<1000 nm) limits their overall therapeutic efficacies as photothermal agent in the second near infrared window (1000-1700 nm, NIR-II). Herein, we report a type of GQDs with strong absorption (1070 nm) in NIR-II region that was synthesized via a one-step solvothermal treatment using phenol as single precursor by tuning the decomposition of hydrogen peroxide under a high magnetic field with an intensity of 9T. The obtained 9T-GQDs demonstrate uniform size distribution (3.6 nm), and tunable fluorescence (quantum yield, 16.67 %) and high photothermal conversion efficacy (33.45%). In vitro and in vivo results indicate that 9T-GQDs could efficiently ablate tumor cells and inhibit the tumor growth under NIR-II irradiation. Moreover, the 9T-GQDs exhibited enhanced NIR imaging of tumor in living mice, suggesting the great probability of using 9T-GQDs for in vivo NIR imaging-guided PTT in the NIR-II window.

    关键词: magnetic field,NIR-II absorbance,photothermal conversion,cancer therapy,graphene quantum dot

    更新于2025-09-12 10:27:22