修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • A Mechanical and modelling study of magnetron sputtered Cerium-Titanium Oxide film coatings on Si (100)

    摘要: Ce/Ti mixed metal oxide thin films have well known optoelectrical properties amongst several other physio-chemical properties. Changes in the structural and mechanical properties of magnetron sputtered Ce/Ti oxide thin films on Si (100) wafers with different Ce:Ti ratios are investigated experimentally and by modelling. X-ray Photoemission Spectroscopy (XPS) and X-ray diffraction (XRD) confirm the primary phases as trigonal Ce2O3 and rutile form of TiO2 with SiO2 present in all prepared materials. FESEM imaging delivers information based on the variation of grain size, the mixed Ce/Ti oxides providing much smaller grain sizes in the thin film/substrate composite. Nanoindentation analysis concludes that the pure cerium oxide film has the highest hardness value (20.1 GPa), while the addition of excess titanium oxide decreases the hardness of the film coatings. High temperature in-situ XRD (up to 1000 °C) results indicate high thermal phase stability for all materials studied. The film with Ce:Ti = 68%:32% has a new additional minor oxide phase above 800 °C. Contact angle experiments suggest that the chemical composition of the surface is insignificant affecting the water contact angle. Results show a narrow band of 87.7o to 95.7o contact angle. The finite element modelling (FEM) modelling of Ce/Ti thin film coatings based on Si(100); Si(110); silica and steel substrates shows a variation in stress concentration.

    关键词: in-situ X-ray diffraction,Finite element modelling,Nanoindentation,Cerium titanium oxides,Mechanical properties

    更新于2025-09-23 15:23:52

  • Experimental investigation and thermo-mechanical modelling for tool life evaluation of photopolymer additively manufactured mould inserts in different injection moulding conditions

    摘要: There is a growing interest for integrating additive manufacturing (AM) technology in different manufacturing processes such as injection moulding (IM) due to the possibility of achieving shorter manufacturing times and increased cost effectiveness. This paper evaluates IM inserts fabricated by the AM vat photopolymerisation method. The inserts are directly manufactured with a photopolymer material, integrated on an injection moulding tool and subsequently used for IM. Therefore, particular attention has to be paid in order to develop the soft tooling process chain and the IM experimental procedure as detailed in this study. Different combinations of IM parameters are investigated in this work in order to determine the influence of the various process settings on the inserts’ performance (lifetime, crack propagation, consistency of the mould surface features). The mould inserts were analysed by three-dimensional optical metrology and evaluated with regard to the different surface features that were affected by the IM process. A three-dimensional thermo-mechanical with phase change model for the analysis of the effects of the IM process on the additive manufactured tools was accomplished in the FE software COMSOL Multiphysics. The potential causes for the insert failure are identified both by means of the IM experiments and the numerical model. The developed model could also predict the thermally induced deformations produced in the mould and identify where this phenomenon would eventually lead to defects in the shape of the parts. The influence of three different temperatures of the insert at 25 °C, 50 °C and 100 °C on the failure of the insert was investigated. Also a detailed discussion about the solidification and temperature changes is given.

    关键词: Finite element modelling,Vat photopolymerization,Injection moulding,Soft tooling,Additive manufacturing

    更新于2025-09-23 15:22:29

  • [IEEE 2018 IEEE SENSORS - New Delhi, India (2018.10.28-2018.10.31)] 2018 IEEE SENSORS - Rectangular Array Current Transducer with Integrated Microfluxgate Sensors

    摘要: Novel rectangular yokeless current transducer with the range 400 A using 16 microfluxgate sensors around the busbar conductor is presented in this paper. Compared to yokeless transducers utilizing the differential pair of magnetic sensors, our solution has much better suppression of external currents (lower crosstalk). Compared to industrial transducers with yoke, the new transducer has 10-times lower noise, 10-times better temperature stability, and same crosstalk. Sensor design, different methods for calculating the current and temperature dependence are presented in this paper. Crosstalk error is examined in dependence on the number of the operating sensors and external current position.

    关键词: Finite element modelling,current sensor,microfluxgate sensors,rectangular sensor array

    更新于2025-09-19 17:15:36

  • Finite element prediction and validation of residual stress profiles in 316L samples manufactured by laser powder bed fusion

    摘要: Laser powder bed fusion (LPBF) processes continue to grow in popularity and much progress has been made in recent years. However, due to the extreme thermal gradients present, significant residual stresses are inevitable and can be detrimental during component service. Critical to mitigating these stresses effectively is the ability to model the thermo-mechanical process accurately and efficiently. A simplified FE modelling methodology has been developed and applied to a cylindrical component built in both the horizontal and vertical orientations. The resulting distortion of the parts following a slitting process was compared with those predicted by the model and good agreement to within 5% was found. The final stress fields in the components were predicted by the model and then examined to assess the principal stresses driving the distortion and the causes of difference in results between the two build orientations.

    关键词: LPBF,residual stress,finite element modelling,Laser powder bed fusion,distortion

    更新于2025-09-12 10:27:22

  • Laser-induced plume investigated by finite element modelling and scaling of particle entrainment in Laser Powder Bed Fusion (LPBF)

    摘要: Although metal vaporisation has been observed in several laser processes such as drilling or welding, vapour plume expansion and its induced side effects are not fully understood. Especially, this phenomenon is garnering scientific and industrial interest since recent investigations in Laser Powder Bed Fusion (LPBF) have designated metal vaporisation as main source of denudation and powder spattering. The present study aims to provide a new insight on the dynamics of laser-induced vaporisation and to assess the potential of different gases for particle entrainment. A self-consistent finite element model of laser-induced keyhole and plume is thus presented for this purpose, built from a comprehensive literature review. The model is validated with dedicated experimental diagnostics, involving high-speed imaging to measure the ascent velocity of the vapour plume. The transient dynamics of vapour plume is thus quantified for different laser incident intensities and gas flow patterns such as the mushroom-like structure of the vapour plume are analysed. Finally, the model is used as a tool to quantify the entrainment flow expected in LPBF and an analytical model is derived to define a velocity threshold for particle entrainment, expressed in term of background gas properties. Doing so it is possible to predict how denudation evolves when the gaseous atmosphere is changed.

    关键词: metal vapour plume,laser beam melting (LBM),high-speed imaging,finite element modelling (FEM)

    更新于2025-09-11 14:15:04

  • Mesoporous titania-coated biosensor and FEM model design for highly sensitive detection of low molecular weight targets

    摘要: This paper presents the interest of a highly sensitive biosensor coated with a TiO2 mesoporous film as sensitive layer. The main novelty is related to the modelling of the device and simulation by using Finite Element Method with COMSOL Multiphysics software, as a good way to take into account the physical properties of porous 3D-layers. The strategy of using such Love wave devices, with 3D porous layers, offering further easy functionalization, aims not only to increase the amount of targets caught on the sensor surface, but also to enhance the detection mechanism by a higher perturbation of the Love wave acoustic energy which could be trapped inside the 3D sensitive layer. First, as a proof of concept, experimental devices with a 3D titania mesoporous layer were realized, and they have shown a good agreement with simulated results. Furthermore, experimental test with several Newtonian liquids are investigated, in a range of viscosities from 1 to 7 cP, typical of those concerned by our biochemical applications. The sensitivity with a 300 nm thick porous sensing layer was 10 times that of the bare device, with interesting dynamical issues to be further studied, giving rise to the great potentialities of such architectures for biological detection of low weight biochemical targets.

    关键词: surface to volume ratio,mesoporous materials,biochemical sensing,Radio Frequency Love wave device,finite element modelling,acoustic interaction in liquid medium

    更新于2025-09-10 09:29:36