修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

100 条数据
?? 中文(中国)
  • Instantaneous fluorescent probe for the specific detection of H2S

    摘要: Novel cyanine-based fluorescent probes for the detection of H2S were developed. The probes developed are stable under physiological conditions. The water soluble fluorescent probe 2 displayed ultrafast and specific response to H2S displaying NIR fluorescence of 115-fold turn-on with the detection limit of 11 nM without assistance of organic solvent or surfactant. Cell imaging experiments indicated that probe 2 was cell-permeable and was able to detect H2S sensitively in lysosomes. Moreover, our probe was able to detect intrinsically produced H2S through enzymatic/non-enzymatic biosynthetic pathway from Cys/GSH. Moreover, we applied probe 2 to detect H2S in living mice and demonstrated the fast metabolism of H2S. Thus, probe 2 shows great promise as a reporter for H2S.

    关键词: lysosome-targeted,H2S,fluorescent probe

    更新于2025-09-19 17:15:36

  • Selective and sensitive determination of celastrol in traditional Chinese medicine based on molecularly imprinted polymers modified Mn-doped ZnS quantum dots optosensing materials

    摘要: In this work, we proposed a facile strategy to prepare molecularly imprinted polymers (MIPs) modified Mn-doped ZnS quantum dots (QDs) as optosensing materials via sol-gel polymerization for specific recognition of celastrol (Cel) in traditional Chinese medicine (TCM). Firstly, L-Cysteine (L-Cys) modified Mn-doped ZnS QDs (L-Cys@Mn-ZnS) was used as imprinting substrate. The amino and carboxyl groups on the surface of Mn-ZnS QDs can provide more binding sites for imprinting polymerization. Then, the fluorescent MIPs was synthesized in the presence of L-Cys@Mn-ZnS QDs, template celastrol, 3-aminopropyl triethoxysilane (APTES) and ammonium hydroxide in the ethanol-water (9/1, v/v) solution. The morphology and structure of the products were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). The resulting MIPs functionalized Mn-doped ZnS QDs (denoted as MIPs@L-Cys@Mn-ZnS QDs) had higher imprinting factor of 14.19 and significant selectivity. The MIPs@L-Cys@Mn-ZnS QDs as fluorescent probe exhibited sensitive response to Cel in the linear range from 0.1 μM to 3.5 μM and the limit of detection was estimated to be 35.2 nM. The probe was also applied for the detection of Cel in traditional Chinese medicine with recovery ranged from 88.0% to 105.0%. The results confirmed that MIPs@L-Cys@Mn-ZnS QDs could efficiently and specifically capture Cel from actual complex traditional Chinese medicine samples.

    关键词: Celastol,Mn-doped ZnS quantum dots,fluorescent probe,traditional Chinese medicine,molecularly imprinted polymers

    更新于2025-09-19 17:13:59

  • Visualization of carboxylesterase 2 with a near-infrared two-photon fluorescent probe and its potential evaluation of anticancer drug effects in orthotopic colon carcinoma mice model

    摘要: We establish a near-infrared two-photon fluorescent probe for the detection of CE2 with high selectivity and sensitivity. This probe exhibits low cytotoxicity and superior tissue penetration ability for evaluating real-time activity of CE2 in living cells, in cancer tissues, and in colon carcinoma mice model.

    关键词: anticancer drug effects,colon carcinoma,CE2,fluorescent probe,two-photon,near-infrared

    更新于2025-09-19 17:13:59

  • Ratiometric fluorometric determination of silver(I) by using blue-emitting silicon- and nitrogen-doped carbon quantum dots and red-emitting N-acetyl-L-cysteine-capped CdTe quantum dots

    摘要: A ratiometric fluorometric assay for silver(I) is described. The method makes use of a dually emitting quantum dot hybrid, which is composed of (a) blue-fluorescent silicon- and nitrogen-doped carbon quantum dots (CQDs), and (b) of red-emitting CdTe quantum dots (QDs) capped with N-acetyl-L-cysteine. The red-emitting CdTe QDs undergo strong and specific quenching by Ag(I), whereas the blue-emitting N,Si-CQDs are not quenched. The two kinds of QDs are mixed and used as a ratiometric fluorescent probe. A linear relationship is found between the log of intensities [(I608/I441)0/(I608/I441)] and the concentration of Ag(I) in the range from 5.0–1000 nM, and the limit of detection (at S/N = 3) is 1.7 nM. Possible interferents (including 17 general metal ions, 12 anions and fulvic acid) do not interfere with the determination. The assay was successfully used for the determination of Ag(I) in surface water and wastewater samples. The fluorescence quenching mechanism of the ratiometric assay system was also discussed in detailed.

    关键词: Fluorescence quenching mechanism,Surface water,Nitrogen-doped carbon dots,Silver ions,Silicon-doped carbon dots,Wastewaters,3-Aminopropyltriethoxysilane functionalized carbon dots,Quenching efficiency,Dual-emission quantum dots hybrid,Fluorescent probe

    更新于2025-09-19 17:13:59

  • Non enzymatic fluorometric determination of glucose by using quenchable g-C3N4 quantum dots

    摘要: A non-enzymatic fluorometric assay is described for the determination of glucose. The method is based on the use of g-C3N4 quantum dots (QDs) that have good water solubility. The QDs were synthesized by a one-step solvothermal process using formamide as precursor. The QDs possess an average size of ~5 nm, a band gap of 3.0~3.5 eV, and strong blue fluorescence (with excitation/emission maxima at 400/447 nm). Fluorescence is quenched by glucose (which acts as the electron acceptor) via an electron transfer mechanism. Comprehensive spectroscopy and density functional theory calculations show that the selectivity of the fluorescent probe can be attributed to the presence of N-H bonds that are formed between the QDs (mainly at plane edges) and glucose. The interaction forces lead to the formation of localized states for capturing hot electrons. This results in a decrease in the band gap and a reduction in fluorescence intensity. The probe is selective over some typical interfering species (such as cysteine and albumin) which often are present in the urine of diabetics. The method has a linear response in the 0.2 to 5.0 mM glucose concentration range and a 0.2 mM detection limit.

    关键词: Density functional theory calculations,Fluorescent probe,Fluorescence quenching,Inorganic nanomaterials

    更新于2025-09-16 10:30:52

  • Preparation and cell imaging of nitrogen-doped graphene quantum dot conjugated indomethacin

    摘要: The nitrogen-doped graphene quantum dot conjugated indomethacin (N-GQD-IDM) was synthesized by an amide reaction. The results of FTIR indicated that the synthesis of N-GQD-IDM was successful. It was then co-cultured with MCF-7 cells, and obvious fluorescence was observed under a laser confocal scanning microscope. With the increase of incubation time, the material accumulated significantly in the cells and the fluorescence intensity of the cells was slightly improved. This compound could be suggested as a promising fluorescent probe in cancer cell labeling.

    关键词: indomethacin,fluorescent probe,cancer cell labeling,nitrogen-doped graphene quantum dots

    更新于2025-09-16 10:30:52

  • A highly sensitive and selective detection of picric acid using fluorescent sulfura??doped graphene quantum dots

    摘要: The development of an analytical probe to monitor highly mutagenic picric acid (PA) carries enormous significance for the environment and for health. A novel, simple and rapid fluorescence analytical assay using sulfur-doped graphene quantum dots (SGQDs) was designed for the highly sensitive and selective detection of PA. SGQDs were synthesized via simple pyrolysis of 3-mercaptopropionic acid and citric acid and characterized using advanced analytical techniques. Fluorescence intensity (FI) of SGQDs was markedly quenched by addition of PA, attributed to the inner filter effect and dominating static quenching mechanism between the two, in addition to a significant colour change. The calibration curve of the proposed assay exhibited a favourable linearity between quenched FI and PA concentration over the 0.1–100 μΜ range with a lowest detection limit of 0.093 μΜ and a correlation coefficient of 0.9967. The analytical assay was investigated for detection of trace amounts of PA in pond and rain water samples and showed great potential for practical applications with both acceptable recovery (98.0–100.8%) and relative standard deviation (1.24–4.67%). Analytical performance of the assay in terms of its detection limit, linearity range, and recovery exhibited reasonable superiority over previously reported methods, thereby holding enormous promise as a simple, sensitive, and selective method for detection of PA.

    关键词: static quenching,inner filter effect,picric acid,fluorescent probe,sulfur-doped graphene quantum dots

    更新于2025-09-16 10:30:52

  • Water-soluble ZnO quantum dots modified by (3-aminopropyl)triethoxysilane: The promising fluorescent probe for the selective detection of Cu2+ ion in drinking water

    摘要: Copper, as an essential element in human body, can have adverse impact on environment and healthy individuals if it is excessive. So it is necessary to establish a rapid and effective method for detecting Cu2+. In this work, we describe a method for determination of Cu2+ based on water-soluble ZnO quantum dots (QDs) modified with (3-aminopropyl)triethoxysilane (APTEs). The ZnO QDs functionalized with APTEs (NH2-ZnO QDs) synthesized by a simple sol-gel method and displayed strong yellow-green fluorescence with a peak at 535 nm under 350 nm excitation. High-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, luminescence, and UV-visible absorption spectroscopy were used to characterize the NH2-ZnO QDs. In addition, the emission from NH2-ZnO QDs was selectively quenched upon addition of Cu2+. Therefore, this finding was used to design a fluorescent probe based on NH2-ZnO QDs to detect Cu2+ in water solution, and the linear relationships were 2-20 nM and 1-100 μM respectively, with detection limit for Cu2+ at 1.72 nM (on the basis of 3σ/slope criterion). This fluorescent probe had also been applied in real water sample to testify its availability in drinking water. Furthermore, the quenching mechanism was studied by measurements of UV-visible absorption spectra and fluorescent lifetime of ZnO QDs, which may be attributed to the aggregation induced by Cu2+ and the dynamic quenching existing energy transfer between QDs and Cu2+.

    关键词: Drinking water,Water-soluble,Fluorescent probe,Cu2+ detection,ZnO QDs,Quenching mechanism

    更新于2025-09-16 10:30:52

  • Rapid Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for Effective Detection of Ferric Ions and as Fluorescent Ink

    摘要: Graphene quantum dots (GQDs) have attracted much attention of many researchers because of their low cytotoxicity, good optical stability, and excellent photoluminescence property, which make them novel nanostructured materials in many application fields ranging from energy to biomedicine and the environment. In this work, highly fluorescent nitrogen-doped graphene quantum dots (N-GQDs) were synthesized through microwave heating using sodium citrate and triethanolamine as raw materials. The as-prepared N-GQDs showed considerable bright blue fluorescence with a quantum yield of 8% and excellent uniform dispersion with an average diameter of approximately 5.6 nm; they also exhibited excellent stability and pH-sensitive properties. Furthermore, we demonstrated the application of N-GQDs as probes for metal ion detection. The results indicated that N-GQDs responded rapidly toward Fe3+ because of the static quenching mechanism. A detection method was proposed, with detection linear in two ranges from 20 to 70 nM (F = ?0.9666 CFe3+ (μM) + 1191.94 (R = 0.9541)); the lowest detection limit of 9.7 nM for Fe3+ was obtained. The results obtained in this work lay the foundation for the development of high-performance and robust metal ion detection sensors. Moreover, it can also possibly be used as a new type of fluorescent ink.

    关键词: Nitrogen-doped,Fluorescent probe,Fluorescent ink,Fe3+ detection,Graphene quantum dots

    更新于2025-09-12 10:27:22

  • Carbon quantum dot-AgOH colloid fluorescent probe for selective detection of biothiols based on the inner filter effect

    摘要: Here, we present a selective and sensitive fluorescent probe for the detection and distinction of biothiols, such as glutathione (GSH) and cysteine (Cys). The adsorbance of Cys onto the surface of AgOH colloid could result in enhanced absorbance from 250 to 400 nm in the UV–vis absorption spectrum, while the addition of GSH could dissolve the AgOH colloid resulting in no change in the UV–vis absorption spectrum. Utilizing these different phenomena, two fluorescent probes were established based on the inner filter effect (IFE). The first probe, the “CDs-AgOH colloid” fluorescent probe, was used to quantitatively analyze Cys over a linear concentration range from 33 to 317 μM and a detection limit of 7.2 μM. The second probe, the “CDs-AgOH colloid-Cys” fluorescent probe, was used to quantitatively analyze GSH, with a detection limit down to 3.6 μM, and a linear range of detection of approximately 16.7 to 100 μM. The fluorescent probes were successfully applied for the detection of GSH in a fetal bovine serum (FBS) sample. Based on these results, IFE is considered to be an effective way to distinguish GSH and Cys.

    关键词: Fluorescent probe,AgOH colloid,Carbon quantum dots,Inner filter effect,Biothiols

    更新于2025-09-12 10:27:22