修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

25 条数据
?? 中文(中国)
  • Construction of a high-performance photocatalytic fuel cell (PFC) based on plasmonic silver modified Cr-BiOCl nanosheets for simultaneous electricity production and pollutant removal

    摘要: The development of high-performance photocatalytic fuel cell (PFC) is seriously hampered by the poor light utilization rate and low charge carriers transfer efficiency. Herein, we have experimentally obtained the plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal-semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed the remarked enhancement on PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carriers transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% Coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than that of MO and TC. And, the Jsc and Voc of Cr-BOC/Ag photoanode were measured to be 0.0073 mA/cm2 and 0.543 V.

    关键词: photocatalytic degradation,SPR,BiOCl,coulombic efficiency,visible light,fuel cell

    更新于2025-11-14 17:03:37

  • [IEEE 2018 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS) - Bhopal, India (2018.2.24-2018.2.25)] 2018 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS) - A Five –level PWM Inverter for Hybrid PV/Fuel Cell/Battery Standalone power System

    摘要: Renewable energy sources (RES) based generation has emerged as one of the best option due to global environmental concerns, especially for off-grid load locations like islands, mountains, etc., where diesel generators are main source of power generation. This paper presents a case study of an efficient photovoltaic (PV) generation integrated with multilevel inverter to ensure regulated power at user end. Perturb and observe (PO) algorithm based maximum power point tracking (MPPT) has been used to track maximum power for PV applications. However in PV based power generation, control problem arises due to large variation of irradiance round the clock. This problem can be overcome by hybrid PV generation system, i.e., application of secondary power source as battery and fuel cell integrated with PV generation unit. The DC output of standalone hybrid PV-SOFC-Battery generation system is inverted by a single-phase multilevel converter. This output of developed standalone hybrid PV-SOFC-Battery generation system is used to supply the single-phase load. This inverter offers less THD which is compared with three level inverter.

    关键词: Battery,Hybrid Power System,Photovoltaic system,Fuel cell,MPPT

    更新于2025-09-23 15:23:52

  • Improved organic pollutants removal and simultaneous electricity production via integrating Fenton process and dual rotating disk photocatalytic fuel cell system using bamboo charcoal cathode

    摘要: A coupling system combining Fenton process with dual rotating disk photocatalytic fuel cell (PFC) was developed to improve methyl orange (MO) removal and simultaneous electricity production, in which the (NH4)3PO4 modified bamboo charcoal (BC) was acted as cathode catalyst. Due to the existence of the N and P containing functional groups on the BC catalyst and the rotating electrode, the hybrid system could efficiently reduce oxygen to generate some hydroxyl radical and related species for MO removal. Therefore, Fenton-PFC-BC with rotation system showed a superior MO removal efficiency of 85%, 2.4 times higher than that in the traditional Fenton-PFC-Pt with aeration system. The radicals inhibition assays and hydrogen peroxide quantitative studies revealed that HO%, h+ and %O2- were primarily responsible for MO degradation. Furthermore, the MO removal performance for Fenton-PFC-BC with rotation system was investigated at different parameters (such as rotating speed, BC loading, pH and ferrous ion concentration) to obtain optimal operation conditions. Results of energy analysis and reusability experiment showed that the proposed Fenton-PFC-BC with rotation system provided a cost-effective and stable method for the organic degradation and energy recovery.

    关键词: Bamboo charcoal,Fenton,Dual rotating disk photocatalytic fuel cell

    更新于2025-09-23 15:23:52

  • Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell

    摘要: Photo-bioelectrochemical fuel cell (PBFC) represents a promising technology for enhancing removal of antibiotic pollutants while simultaneously sustainable transformation of organic wastes and solar energy into electricity. In this study, simultaneous antibiotic removal and bioelectricity generation were investigated in a PBFC with daily light/dark cycle using oxytetracycline (OTC) as a model compound of antibiotic. The specific OTC removal rate increased by 61% at an external resistance of 50 U compared to that in the open-circuit control, which was attributed to bioelectrochemically enhanced co-metabolic degradation in the presence of the bioanode. The OTC removal was obviously accelerated during illumination of cathode in contrast with a dark cathode due to the higher driving force for anodic bioelectrochemical reaction by using photosynthetic oxygen as cathodic electron acceptor during illumination than that using nitrate in dark. The bioelectrocatalytic activity of anodic biofilm was continuously enhanced even at an initial OTC concentration of up to 50 mg L?1. The degradation products of OTC can function as mediators to facilitate the electron transfer from bacteria to the anode, resulting in 1.2, 1.76 and 1.8 fold increase in maximum power output when 10, 30 and 50 mg L?1 OTC was fed to the bioanode, compared to the OTC-free bioanode, respectively. The OTC feeding selective enriched OTC-tolerant bacterial community capable of degrading complex organic compounds and producing electricity. The occurrence of ARGs during bioelectrochemical degradation of OTC was affected more greatly by the succession of the anodic bacterial community than the initial OTC concentration.

    关键词: Bioanode,Electron transfer,Oxytetracycline removal,Photo-bioelectrochemical fuel cell

    更新于2025-09-23 15:23:52

  • [IEEE 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA) - Paris, France (2018.10.14-2018.10.17)] 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA) - A Study on DC Microgrids Voltages based on Photovoltaic and Fuel Cell Power Generators

    摘要: DC microgrid based on photovoltaic (PV, 500 WP) and fuel cell (FC, 1 kW) power generators have been designed to operate DC loads at different voltage levels (24 V, 48 V and 110 V). The voltage level in a DC microgrid decides the system efficiency, voltage regulation and the total cost. The system efficiency is shown to depend on the power conversion mode (DC-DC converter) efficiency and ohmic loss (in connecting cables). DC loads used vary from 250 W to 1000 W and according the cable sizing is required to be changed to improve the voltage regulation and to reduce the cable loss. The buck -boost DC-DC converter is used in 24/48 V microgrids, while boost converter is required for 110 V microgrid. The buck-boost converter efficiency is ≈ 85% and the boost converter provides efficiency ≈ 95%. It is shown that 110 V DC voltage level gives optimum performance for low power DC microgrid in comparison with 24 V or 48 V.

    关键词: DC Microgrid,Buck-Boost DC-DC converter,Photovoltaics,Fuel cell

    更新于2025-09-23 15:23:52

  • Design and analysis of a multigeneration system with concentrating photovoltaic thermal (CPV/T) and hydrogen storage

    摘要: Concentrated photovoltaics (CPV) is an auspicious technology to overcome the high cost problem of highly efficient multi-junction solar cells. However, due to huge concentration of light energy, high heat flux dissipation from a confined space is a challenge. The proposed system here is first of its type to apply and thermodynamically analyze the Nucleate Pool Boiling Heat Transfer (NBHT) for thermal management of CPV. In order to increase overall efficiency of CPV system, a multigeneration system using concentrated photovoltaic thermal (CPV/T) and hydrogen storage is designed and thermodynamically analyzed to fulfill electricity, hot and cold water, heating ventilation and cooling (HVAC) requirement of a residential community with continuous operation. A part of the generated electricity from CPV is used to power the electrolyzer to produce hydrogen and oxygen. The produced gases are stored, and reused by proton exchange membrane fuel cell (PEMFC) to fulfill the system's electrical energy requirement during night time and unfavourable energy conditions in day time. The resultant thermal energy from CPV/T is used for the heating, hot water and cooling requirement of the buildings by employing lithium bromide absorption chiller (AbC). A humidity harvesting system is connected, at the outlet of the absorption chiller, to convert humid air into water and ventilation air requirement of the building. The designed system performs at 67.52% overall energy efficiency, 34.89% of overall exergy efficiency and up to 1862 times concentration ratio at designed steady-state conditions. The results show that with an increase in boiling temperature of NBHT from 353 K to 373 K, the maximum concentration ratio ability increases significantly from 1392 to 2400 times due to increase in critical heat flux, while the electrical efficiency of the CPV system decreases from 28.65% to 27.09% because of increase in cell temperature. To verify the performance of the designed system for different locations, operating conditions and capacities, the effects of Direct Normal Irradiance (IDNI), ambient temperature, relative humidity ratio and the installed capacity are also analyzed by the parametric studies.

    关键词: Concentrated photovoltaics,Multigeneration system,Hydrogen storage,Exergy,Solar photovoltaics/thermal system,Electrolyzer and fuel cell

    更新于2025-09-23 15:23:52

  • Enhancing the performance of photo-bioelectrochemical fuel cell using graphene oxide/cobalt/polypyrrole composite modified photo-biocathode in the presence of antibiotic

    摘要: Photo-bioelectrochemical fuel cell (PBFC) holds a great potential to harvest sustainable electrical energy from wastewater, but low power output limits its applications due to poor electrochemical performance of photo-biocathode. Additionally, antibiotics are ubiquitous in wastewater streams, but little is known regarding their effects on photo-biocathode performance of the PBFC. This study attempted to increase power output of PBFC through improvement of the photo-biocathode performance by modifying the biocathode with graphene oxide/cobalt/polypyrrole (GO/Co/PPy) composite in the presence of oxytetracycline. The GO/Co/PPy composite modified electrode fabricated by one-step electropolymerization method exhibited more excellent catalytic activity toward oxygen reduction compared to Co-alone and Co/PPy modified electrode. The PBFC with GO/Co/PPy composite modified biocathode produced a maximum power density of 19 mW/m2, which was almost 4-fold higher than that produced with the bare biocathode (4.9 mW/m2) due to improved bio-electrocatalytic performance of the bicathode by the GO/Co/PPy composite. The maximum power density of the PBFC was further increased 4.6 (105.5 mW/m2), 3.7 (88.7 mW/m2), 2.9 (74.6 mW/m2) and 1.9 (56 mW/m2) fold by exposure to 5, 10, 20, and 50 mg/L OTC, respectively. The further increases in power was due to reduced cathode's charge transfer resistance using degradation products of OTC as mediators and OTC-stimulated growth of species with extracellular electron transfer ability. However, the photosynthesis and growth of alga was negatively affected by OTC concentration higher than 10 mg/L, resulting performance deterioration of bicathode.

    关键词: Photo-bioelectrochemical fuel cell,Electrode modification,Oxytetracycline,Performance improvement,Power generation

    更新于2025-09-23 15:22:29

  • Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell

    摘要: Photocatalytic fuel cell (PFC) is promising owing to its synchronous organic pollutants removal and energy recycle, but it still remains to improve in the cell performance. Herein, we demonstrate a synergistic method adding peroxymonosulfate (PMS) into PFC to promote antibiotic tetracycline (TC) degradation and simultaneous electric power generation. The introduction of PMS could be activated by the photoelectric effects, also used as the electrolyte and electron acceptor, which could enhance the photoelectrocatalysis and spread the reaction space from the electrode surface to the whole system. Herein, the PFC/PMS augmented the TC decontamination by 82.83% and electricity production by 122.40% versus the PFC without introducing PMS, respectively. In addition, factors controlled namely PMS dosage, solution pH, and UV intensity were investigated for the cell performance of the coupling system. Furthermore, UVeVis spectrum and TOC analysis con?rmed the destruction mineralization of TC. Moreover, a series of radicals quenching experiments were implemented to explore the cooperative elimination mechanism, and the results indicated that hydroxyl and sulfate radicals played the key roles at the acidic condition, and the direct oxidation of PMS dominated the chief effect at the neutral environment, and singlet oxygen and superoxide anion acted the primary function in the alkaline circumstance.

    关键词: Tetracycline degradation,Electricity production,Photocatalytic fuel cell,Peroxymonosulfate activation

    更新于2025-09-23 15:22:29

  • Design of Efficient Resonator-Enhanced Electro-Optic Frequency Comb Generators

    摘要: This paper proposes a direct double-frequency ripple current control in a single-phase high-power fuel cell converter that can achieve low-frequency ripple-free input current without using large electrolytic capacitors. To eliminate the double-frequency ripple current disturbance introduced by the single-phase inverter load, a proportional–resonant controller is developed to achieve an extra high control gain at designed resonant frequency. This high gain can be viewed as the virtual high impedance for blocking the double-frequency ripple energy propagation from inverter load to fuel cell stack. More particularly, the proposed control system can realize the utilization of all capacitive ripple energy sources in the system by regulating all the capacitors to have large voltage swing. In addition, this voltage swing is synchronized to keep real-time balancing of the transformer primary- and secondary-side voltages. As a result, the zero-voltage-switching operation for all switching devices in the dc–dc stage can be guaranteed. The controller design guidelines are derived based on the system small-signal model. The experimental results are presented to validate the theoretical analysis and proposed technology.

    关键词: Current-fed three-phase dc–dc converter,fuel cell,direct double-frequency ripple current control,electrolytic capacitor free,zero voltage switching (ZVS)

    更新于2025-09-23 15:21:01

  • [Advances in Intelligent Systems and Computing] Applications of Artificial Intelligence Techniques in Engineering Volume 698 (SIGMA 2018, Volume 1) || Predictive Control of Energy Management System for Fuel Cell Assisted Photo Voltaic Hybrid Power System

    摘要: Distributed generation systems also known as hybrid power systems which involve renewable energy sources are extensively used due to their ef?ciency and green interface. Considering the varying environmental conditions, these systems are prone to many disadvantages and limitations. In order to overcome these constraints, intelligent techniques which can achieve steady process and power balance are to be implemented. This paper provides an intelligent control using fuzzy inference system and energy management algorithm for Fuel cell assisted PV Battery system. The supervisory control was implemented to achieve utmost feasible ef?- ciency despite varying conditions such as irradiance and Hydrogen levels. With Lev- elized cost being adapted, an ef?cient energy management system attributes for even power distribution throughout the day can be implemented. Our thought process was demonstrated, and ?nal software interface was simulated using MATLAB/Simulink to obtain results which con?rm the effectiveness of the developed system.

    关键词: MPPT,Inference systems,Fuzzy logic controller,Energy management,Fuel cell,PVFC hybrid system

    更新于2025-09-23 15:21:01