- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Ionic Radii and Concentration Dependency of RE <sup>3+</sup> (Eu <sup>3+</sup> , Nd <sup>3+</sup> , Pr <sup>3+</sup> and La <sup>3+</sup> ) Doped Cerium Oxide Nanoparticles for Enhanced Multi-Enzyme Mimetic and Hydroxyl Radical Scavenging Activity
摘要: The anti-oxidant activity of cerium oxide nanoparticles (CNPs) depends on the concentration of oxygen vacancies and Ce3+ active sites. In the present work, we report the impact of 5 mol% tri-valent rare earth doped (RE3+ = Eu3+, Nd3+, Pr3+ and La3+) CNPs on the oxidation state modulation and anti-oxidant property with respect to ionic radii. An increase in lattice parameter, strain and oxygen vacancy concentration was observed as a function of ionic radii. Among the various dopants in CNP, La3+ with higher ionic radii having smaller crystallite size (7.9 nm) and higher vacancy displayed better peroxidase, oxidase and hydroxyl radical (HO?) scavenging activity. The kinetic parameters for the peroxidase and oxidase activity was found to be superior with Km = 0.217 mM and 0.261 mM, respectively, for 5 mol% La3+ doped CNPs. In order to divulge the role of dopants concentration on structural properties, we also explored using 10 and 20 mol% La3+ doping in CNP. Due to smaller crystallite size (6.7 nm) and higher defect level (3.12 x 1021 cm-3), 20% La3+ doping showed superior peroxidase and oxidase activity as shown by the low Km values. CNPs exhibit both peroxidase and oxidase activity in a concentration dependent manner. Moreover, CNPs exhibit a concentration dependent peroxidase and oxidase activity that can be selectively activated for various theranostic applications. Thus, our results demonstrate the crucial role of ionic radii and concentration of RE3+ dopants on the defect formation in cerium oxide nanoparticles for improved anti-oxidant properties of ceria.
关键词: ionic radii,RE3+ doping,oxygen vacancies,peroxidase activity,oxidase activity,hydroxyl radical scavenging,cerium oxide nanoparticles,anti-oxidant properties
更新于2025-09-04 15:30:14
-
Improvement of the Degradation of Methyl Orange Using a TiO2/BDD Composite Electrode to Promote Electrochemical and Photoelectro-Oxidation Processes
摘要: Electrophoretic deposit of titanium dioxide (TiO2) was carried out over a boron doped diamond plate of 2 cm2, annealing at 350 °C to produce binary TiO2/BDD composite electrode. The composite was characterized by scanning electron microscopy (SEM) and linear sweep voltammetry (LSV) response. N,N-dimethyl-p-nitrosoaniline (RNO) was used as a probe molecule for the detection of free radicals (?OH) during the oxidation of water in phosphate buffer (pH 4) solution; at the TiO2/BDD/hv composite, an apparent first-rate kinetic constant of kobs = 0.1314 min-1 was observed. Afterwards, the composite electrode was applied to degrade 40 and 100 mg L-1 of a typical azo dye methyl orange (MO) via electrochemical process, such as: electro-oxidation (EO) and photoelectro-oxidation (PEO) under 25, 75 and 125 mA cm-2 current density (j); the PEO tests were performed using a UVA lamp at 365 nm. Results showed that the discoloration in the PEO process was larger than in the EO process, 96 and 100 %, respectively. Chemical Oxygen Demand (COD) was tested to evaluate the degradation. Hydroxylated derivatives were identified by means of mass spectroscopy during the PEO of MO in a TiO2/BDD/hv composite electrode.
关键词: TiO2/BDD composite,electrochemical process,hydroxyl radical formation,azo dye,water treatment
更新于2025-09-04 15:30:14
-
Enhanced etching of tin-doped indium oxide due to surface modification by hydrogen ion injection
摘要: It is known that the etching yield (i.e., sputtering yield) of tin-doped indium oxide (ITO) by hydrocarbon ions (CHx+) is higher than its corresponding physical sputtering yield [H. Li et al., J. Vac. Sci. Technol. A 33, 060606 (2015)]. In this study, the effects of hydrogen in the incident hydrocarbon ion beam on the etching yield of ITO have been examined experimentally and theoretically with the use of a mass-selected ion beam system and by first-principles quantum mechanical (QM) simulation. As in the case of ZnO [H. Li et al., J. Vac. Sci. Technol. A 35, 05C303 (2017)], mass-selected ion beam experiments have shown that the physical sputtering yield of ITO by chemically inert Ne ions increases after a pretreatment of the ITO film by energetic hydrogen ion injection. First-principles QM simulation of the interaction of In2O3 with hydrogen atoms shows that hydrogen atoms embedded in In2O3 readily form hydroxyl (OH) groups and weaken or break In–O bonds around the hydrogen atoms, making the In2O3 film less resistant to physical sputtering. This is consistent with experimental observation of the enhanced etching yields of ITO by CHx+ ions, considering the fact that hydrogen atoms of the incident CHx+ ions are embedded into ITO during the etching process.
关键词: quantum mechanical simulation,sputtering yield,tin-doped indium oxide,hydrogen ion injection,physical sputtering,ITO,etching yield,In2O3,hydrocarbon ions,hydroxyl groups
更新于2025-09-04 15:30:14
-
Advanced oxidation of formaldehyde in aqueous solution using the chemical-less UVC/VUV process: Kinetics and mechanism evaluation
摘要: This study was conducted to evaluate the degradation of high concentrations of formaldehyde in the chemical-less UVC/VUV photo-reactor. 99.5% degradation and 94% chemical oxygen demand (COD) removal of 200 mg/L formaldehyde was achieved in the UVC/VUV photo-reactor at reaction time of 60 min and solution pH of 7. The effect of water anions such as carbonate, bicarbonate, nitrate, chloride, sulfate and phosphate was examined on degradation and COD removal of formaldehyde; nitrate and carbonate exhibited the highest inhibitory effects on the process. Besides, treatment of formaldehyde-contaminated tap water was also investigated and formaldehyde removal was decreased from 99.5% is aqueous solution to 86.2% in tap water. The findings of radical scavenging tests revealed that hydroxyl radical was the most predominant oxidizing agent contributed in degradation of formaldehyde. It is concluded therefore that the UVC/VUV process as a unique chemical-less process efficient for advanced degradation of high concentrations of formaldehyde.
关键词: Hydroxyl radical,COD removal,Vacuum UV,Formaldehyde degradation,Advanced photo-oxidation
更新于2025-09-04 15:30:14
-
Optical bonding of tellurite glass film on silicate glass
摘要: Tellurite glass thin film was successfully bonded on a silicate glass substrate by the direct bonding (DB) method. Glass film (thickness 1-3 μm) was fabricated by the glass blowing technique and the DB process was performed at room temperature at relative humidity (RH) of 62% or 15%. The surface adhesive strengths of the glass films bonded at 15% and 62% RH were measured as 250 and 96 mJ/m2 respectively by the Obreimoff-Metsik method. The hydroxyl (-OH) functional groups on the interface between the film and silicate glass were analyzed by Fourier transform infrared spectroscopy. The major bonding forces between the tellurite thin film and silicate glass were hydrogen bonds at 62% RH and bonds between Te on the tellurite glass and O on the silicate glass were concerned at 15% RH. These forces, contributed by Si-OH, were important for bond formation at 62%. The large amounts of water and OH groups on the silicate glass, determined by thermogravimetric analysis, indicated a weaker bonding process at 62% RH. This work will contribute toward reliable, high-integrity components for integrated optical circuits, which are increasingly needed for high-throughput data transfer.
关键词: glass thin film,tellurite glass,hydroxyl group,adhesive strength,direct bonding
更新于2025-09-04 15:30:14