- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Fabrication of highly efficient and stable hole‐transport material free perovskite solar cells through morphology and interface engineering: full ambient process
摘要: Carbon based hole-transport material (HTM) free perovskite solar cells (PVSCs) with low cost and high stability have attracted research interests. Here, we report a facile way to improve the performance of HTM free PVSCs by employing two strategies: firstly, adding a small amount of tetrahydrofuran (THF) in lead iodide (PbI2)/N,N-dimethylformamide (DMF) solution to improve the quality of perovskite film; secondly, introducing an ultra-thin Al2O3 film at the interface of TiO2/perovskite to reduce charge recombination. THF is found to facilitate the formation of homogenous perovskite films with better coverage, while the ultra-thin Al2O3 layer will avoid the direct contact of TiO2 with CH3NH3PbI3. The Al2O3 layer can effectively block holes and prevents charge recombination, thus lead to a dramatic improvement of open circuit voltage and fill factor in PVSCs. Moreover, our PVSCs show excellent long term stability with no degradation for 1000 hours under ambient conditions. We provide a facile way for the future commercialization of efficient low-cost HTM-free PVSCs.
关键词: hole conductor free,interface engineering,perovskite solar cells,high stability
更新于2025-10-22 19:40:53
-
Doping induced performance enhancement in inverted small molecule organic photodiodes operating below 1V reverse bias - Towards compatibility with CMOS for imaging applications
摘要: Organic photodiodes (OPDs) offer a myriad of advantages over conventional inorganic photodetectors, making them particularly attractive for imaging application. One of the key challenges preventing their utilization is the need for their integration into the standard CMOS processing. Herein, we report a CMOS-compatible top-illuminated inverted small molecule bi-layer OPD with extremely low dark leakage current. The device utilizes a titanium nitride (TiN) bottom electrode modified by a [6,6]-phenyl C61 butyric acid methyl ester (PCBM) cathode buffer layer (CBL). We systemetically show that doping the CBL enhances device's low voltage (below 1 V reverse bias) photoresponse by increasing the linear dynamic range (LDR) and making the bandwidth of the photodidoe broader without compromising the leakage current. The optimized device exhibits a dark leakage current of only ~ 6 x 10-10 A/cm2 at -0.5 V. The external quantum efficiency (EQE) at 500 nm reaches 23% with a calculated specific detectivity as high as 7.15 x 1012 cm Hz1/2/W (Jones). Also the LDR approaches 140dB and the bandwidth is about 400kHz, at -0.5 V bias. The proposed device structure is fully compatible with CMOS processing and can be integrated onto a CMOS readout circuit offering the potential to be applied in high-performance large-scale imaging arrays.
关键词: Interface engineering,Doping,CMOS,Titanium nitride,Organic photodiode,Cathode buffer layer
更新于2025-09-23 15:23:52
-
Interface Engineering of Au(111) for the Growth of 1T′-MoSe <sub/>2</sub>
摘要: Phase-controlled synthesis of two-dimensional transition metal dichalcogenides (TMDCs) is of great interest due to the distinct properties of the different phases. However, it is challenging to prepare metallic phase of group-VI TMDCs due to their metastability. At the monolayer level, interface engineering can be used to stabilize the metastable phase. Here, we demonstrate the selective growth of either single-layer 1H or 1T’-MoSe2 on Au(111) by molecular beam epitaxy; the two phases can be unambiguously distinguished using scanning tunnelling microscopy and spectroscopy. While the growth of 1H-MoSe2 is favourable on pristine Au(111), the growth of 1T’-MoSe2 is promoted by the pre-deposition of Se on Au(111). The selective growth of 1T’-MoSe2 phase on Se-pretreated Au(111) is attributed to Mo intercalation-induced stabilization of the 1T’ phase, which is supported by density functional theory calculations. In addition, 1T’ twin boundaries and 1H-1T’ heterojunctions were observed and found to exhibit enhanced tunnelling conductivity. The substrate pre-treatment approach for phase-controlled epitaxy should be applicable to other group-VI TMDCs grown on Au (111).
关键词: phase control,heterojunction,scanning tunnelling microscopy/spectroscopy,interface engineering,transition metal dichalcogenides,MoSe2
更新于2025-09-23 15:23:52
-
Interface Engineering of CsPbBr <sub/>3</sub> Nanocrystal Light-Emitting Diodes via Atomic Layer Deposition
摘要: Perovskite nanocrystal (PNC) suffers from solution corrosion and water/oxygen oxidation when used in light-emitting diodes (LEDs). Atomic layer deposition (ALD) is applied to introduce Al2O3 infilling and interface engineering for the CsPbBr3 nanocrystal emission layers, and the inorganic electron transport layer-based CsPbBr3–ZnMgO LED device is fabricated. The introduction of Al2O3 ALD layers significantly improves the tolerance of CsPbBr3 PNC thin films to polar solvents ethanol of ZnMgO during spin coating. The operation lifetime of ALD-treated CsPbBr3 PNC–ZnMgO LED is prolonged to about two orders of magnitude greater than that of the CsPbBr3 PNC-TPBi LED device with a largely improved external quantum efficiency (EQE) value. Moreover, the infilling of Al2O3 into the CsPbBr3 layer boosts the carrier mobility for more than 40 times inside the light-emission layer. However, the interfacial carrier transport between different functional layers is hindered by the insulated Al2O3 layer, which provides an effective barrier for excess electron transport. Such a favorable band alignment facilitates the carrier balance of the device and contributes to the improved electroluminescent performance of the device with ALD Al2O3 interface engineering, which is further supported by theoretical device modeling. Herein, a facile method is provided to fabricate PNC-LED devices with both high efficiency and long-term lifetime.
关键词: light emitting diodes,working stability,interface engineering,atomic layer deposition,CsPbBr3 perovskite nanocrystals
更新于2025-09-23 15:21:01
-
Deep insights into interface engineering by buffer layer for efficient perovskite solar cells: a first-principles study; é?????é??é??????¤aé?3è????μ?±???-?????2?±????é?¢?·¥?¨?????·±??¥???è§£: ????????§????????????;
摘要: Recent years have seen swift increase in the power conversion efficiency of perovskite solar cells (PSCs). Interface engineering is a promising route for further improving the performance of PSCs. Here we perform first-principles calculations to explore the effect of four candidate buffer materials (MACl, MAI, PbCl2 and PbI2) on the electronic structures of the interface between MAPbI3 absorber and TiO2. We find that MAX (X = Cl, I) as buffer layers will introduce a high electron barrier and enhance the electron-hole recombination. Additionally, MAX does not passivate the surface states well. The conduction band minimum of PbI2 is much lower than that of MAPbI3 absorber, which significantly limits the band bending of the absorber and open-circuit voltage of solar cells. On the other side, suitable bandedge energy level positions, small lattice mismatch with TiO2 surfaces, and excellent surface passivation make PbCl2 a promising buffer material for absorber/electron-transport-layer interface engineering in PSCs. Our results in this work thus provide deep understanding on the effects of interface engineering with a buffer layer, which shall be useful for improving the performance of PSCs and related optoelectronics.
关键词: perovskite solar cells,band alignment,interfacial defect passivation,buffer layer,interface engineering
更新于2025-09-23 15:21:01
-
Graphdiyne: Bridging SnO <sub/>2</sub> and Perovskite in Planar Solar Cells
摘要: The collocation between charge transport layer and photoactive layer is extremely critical in solar energy conversion devices. More recently, it is especially prominent for promising planar perovskite solar cell based on SnO2 electron transfer layer (ETL) due to its unmatched photogenerated electron and hole extraction rates. Thereby, graphdiyne (GDY) with multi-roles has been incorporated to maximize the collocation between SnO2 and perovskite regarding perspectives of electron extraction rate optimization as well as the interface engineering for perovskite growth inducement and interfacial defect passivation, enabling such interfacial function towards both perovskite crystallization process and subsequent photovoltaic service duration. The GDY doped SnO2 layer finally results 4-times improved electron mobility and more facilitated band alignment. Simultaneously, the enhanced hydrophobicity effectively inhibits heterogeneous perovskite nucleation, contributing to high quality film with diminished grain boundaries and lower defect density. The systematical density functional theory study has further indicated that freshly formed C-O σ bond resulted electrical property enhancement and the passivated Pb-I antisite defects are both originated from GDY introduction. The 21.11% power conversion efficiency with negligible hysteresis indicate such scenario may trigger unlimited reverie of promising GDY materials and provide more insights on elaborately interfacial design in perovskite solar cells.
关键词: graphdiyne,SnO2,solar cells,perovskite,interface engineering
更新于2025-09-23 15:21:01
-
Graphdiyne: Bridging SnO <sub/>2</sub> and Perovskite in Planar Solar Cells
摘要: The collocation between charge transport layer and photoactive layer is extremely critical in solar energy conversion devices. More recently, it is especially prominent for promising planar perovskite solar cell based on SnO2 electron transfer layer (ETL) due to its unmatched photogenerated electron and hole extraction rates. Thereby, graphdiyne (GDY) with multi-roles has been incorporated to maximize the collocation between SnO2 and perovskite regarding perspectives of electron extraction rate optimization as well as the interface engineering for perovskite growth inducement and interfacial defect passivation, enabling such interfacial function towards both perovskite crystallization process and subsequent photovoltaic service duration. The GDY doped SnO2 layer finally results 4-times improved electron mobility and more facilitated band alignment. Simultaneously, the enhanced hydrophobicity effectively inhibits heterogeneous perovskite nucleation, contributing to high quality film with diminished grain boundaries and lower defect density. The systematical density functional theory study has further indicated that freshly formed C-O σ bond resulted electrical property enhancement and the passivated Pb-I antisite defects are both originated from GDY introduction. The 21.11% power conversion efficiency with negligible hysteresis indicate such scenario may trigger unlimited reverie of promising GDY materials and provide more insights on elaborately interfacial design in perovskite solar cells.
关键词: SnO2,Solar Cells,Graphdiyne,Perovskite,Interface Engineering
更新于2025-09-23 15:21:01
-
Bilateral Interface Engineering for Efficient and Stable Perovskite Solar Cells using Phenylethylammonium Iodide
摘要: Achieving high efficiency and long-term device stability is a vital issue for the commercialization of organic-inorganic hybrid perovskite solar cells (PeSCs). In this work, phenyl ethyl-ammonium iodide (PEAI)-induced bilateral interface engineering was developed to improve the device efficiency and stability of methylammonium lead triiodide (MAPbI3)-based PeSCs. Introducing PEAI onto poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) layer modifies the surface properties of the PEDOT:PSS and facilitates the formation of a high-quality perovskite active layer with enlarged grains on the PEDOT:PSS. The PEA+ in the PEAI-PEDOT:PSS also alters the work function of the PEDOT:PSS, leading to a reduction in the energy difference between the PEDOT:PSS and MAPbI3 perovskite layer, which decreases energy loss during charge transfer. Additionally, depositing PEAI onto three dimensional (3D) perovskite yields a two dimensional/three dimensional (2D/3D) stacked structure for the perovskite active layer. Because the two dimensional (2D) top layer acts as a capping layer to prevent water penetration, the stability of the perovskite active layer is significantly enhanced. A PeSC device fabricated based on this combination exhibits enhanced power conversion efficiency and extended device lifetime compared to a pristine PeSC. Under high-humidity conditions (75 ± 5%), the PEAI-treated PeSC retains 88% of its initial power conversion efficiency (PCE) after 100 h. In contrast, a pristine PeSC device loses over 99% of its initial PCE after only 25 h under the same conditions.
关键词: high efficiency,perovskite solar cells,bilateral interface engineering,PEAI,long-term stability
更新于2025-09-23 15:21:01
-
Engineering of Electron Extraction and Defects Passivation via Anion Doped Conductive Fullerene Derivatives as Interlayers for Efficient Invert Perovskite Solar Cells
摘要: The major limitation of organic-inorganic perovskite solar cells performance is the existence of numerous charged defects at the absorption layer surface, which caused charge carrier recombine depravation. These defects have remarkable influence on the charge extraction, which further caused the instability of device and induce severe hysteresis. Here, three low-cost anion-doping conductive fullerene derivatives, fullerene bis(phenethyl alcohol) malonate (FMPE-I), fullerene bis(ethylenediamine) malonamide (FEDA-I), and fullerene bis(propanediamine) malonamide (FPDA-I), are developed for the first time as interfacial layers between a perovskite and phenyl-C61-butyric acid methyl ester (PCBM) in planar invert perovskite solar cells under mild solution fabrication. The constituent Lewis basic halides and the specific amide groups of conductive fullerene derivatives efficaciously heighten the chemical interaction between the perovskite and conductive fullerene derivatives since the iodide can combine with under-coordinated Pb2+ by electrostatic interaction and amide group can facilely combined with I by hydrogen bonding, improving the dual-passivation of perovskite defects. Moreover, due to the well-matched energy level of conductive fullerene derivatives and the high conductivity of the perovskite/interlayer film, the electron extraction capacity can be effectively enhanced. Consequently, superior optoelectronic properties are achieved with an improved power conversion efficiency of 17.63%, which is considerably higher than that of the bare PCBM based devices (14.96%), for the perovskite device with conductive interlayer treatment along with a negligible hysteresis. Moreover, hydrophobic conductive fullerene derivatives improve the resistance of device to moisture. The conductive fullerene derivative-based devices without encapsulation are maintained at 85% of the pristine power conversion efficiency value after storage in ambient conditions (25 oC temperature, 60% humidity) for 500h.
关键词: dual-passivation,energy level alignment,perovskite solar cells,Conductive fullerene derivatives,interface engineering
更新于2025-09-23 15:21:01
-
Effect of TaN intermediate layer on the back contact reaction of sputter-deposited Cu poor Cu2ZnSnS4 and Mo
摘要: Ultrathin tantalum nitride (TaN) intermediate layers (IL) with thicknes from 3 nm to 12 nm have been used to limit the undesirable interfacial reaction between molybdenum (Mo) and copper-zinc-tin-sulphide (CZTS). The morphology, chemical and structural properties of the samples were characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction analysis, and scanning transmission electron microscopy (STEM). Time-of-flight secondary ion mass spectrometry (TOFSIMS), energy-dispersive X-ray spectroscopy (EDX), and electron energy loss spectroscopy (EELS) have been used for elemental analysis. Thin TaN IL show chemical reactivity towards sulphur (S) vapor at 600oC and the incorporation of S in TaN reduces the S concentration in Mo films at the sub-surface region and thus improves electrical conductivity of sulphurised Mo. The use of a non-stoichiometric quaternary compound CZTS target along with TaN IL enables to minimise thickness of MoS2 layer and reduce void formation at the Mo/CZTS interface. Furthermore, incorporation of TaN IL improves scratch hardness of CZTS/Mo films to soda-lime glass substrate.
关键词: interface engineering,MoS2,Void reduction,TaN intermediate layer,Elemental out-diffusion,Sputter-grown Cu2ZnSnS4
更新于2025-09-23 15:21:01