- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Monolithic metal dimer-on-film structure: new plasmonic properties introduced by the underlying metal
摘要: Dimers -two closely-spaced metallic nanostructures- are one of the primary nanoscale geometries in plasmonics, supporting high local field enhancements in their interparticle junction under excitation of their hybridized “bonding” plasmon. However, when a dimer is fabricated on a metallic substrate, its characteristics are changed profoundly. Here we examine the properties of an Au dimer on an Au substrate. This structure supports a bright “bonding” dimer plasmon, screened by the metal, and a lower energy magnetic charge transfer plasmon. Changing the dielectric environment of the dimer-on-film structure reveals a broad family of higher-order hybrid plasmons in the visible region of the spectrum. Both the localized surface plasmons resonances (LSPR) of the individual dimer-on-film structures as well as their collective surface lattice resonances (SLR) show a highly sensitive refractive index sensing response. Implementation of such all-metal magnetic-resonant nanostructures offers a promising route to achieve higher-performance LSPR- and SLR-based plasmonic sensors.
关键词: Plasmonics,localized surface plasmon resonance,surface lattice resonance,LSPR sensing,refractive index sensing
更新于2025-11-21 11:24:58
-
Fano-like resonance in large-area magnetic metamaterials fabricated by nanoimprint technique title
摘要: We experimentally and theoretically investigated the Fano-like resonance in large-area magnetic metasurfaces fabricated by nanoimprint lithography technique based on elaborately designed Ag-SiN-Ag configuration. Asymmetric line shape is revealed in reflection spectrum of the magnetic metamaterials. The physical mechanism is elucidated through dispersion relation and electromagnetic field distribution analysis. Both the measured and calculated dispersion relation tell that there are magnetic resonance modes and surface lattices modes coexisting in the magnetic metamaterials, their coupling leads to the asymmetric profile in the reflection spectrum. The calculated electromagnetic field distribution further consolidate the coupling phenomenon in the magnetic metamaterials. This work might significantly prompt the applications of metamaterials in sensing, lasing, and optical devices designing.
关键词: SPP,magnetic resonance,Fano Resonance,surface lattice resonance,magnetic metamaterials
更新于2025-09-23 15:23:52
-
Lattice Zenneck Modes on Subwavelength Antennas
摘要: Optical resonances in isolated nanoparticles made out of commonly occurring materials with high optical losses, such as transition metal dichalcogenides, germanium, carbide, and others, are weak and not sufficient for field enhancement and competing with plasmonic resonances in noble metal nanoparticles. This work presents a novel approach to achieve strong resonances in the arrays of such nanoparticles with large optical losses and points to their potential for efficient light control in ultra-thin optical elements, sensing, and photovoltaic applications. Materials with large imaginary part of permittivity (LIPP) are studied and nanostructures of these materials are shown to support not only surfaces modes, known as Zenneck waves, but also modes localized on the subwavelength particle. This approach opens up the possibility of exciting strong localized nanoparticle resonances without involving plasmonic or high-refractive-index materials. Arranging LIPP particles in a periodic array plays a crucial role allowing for collective array resonances, which are shown to be much stronger in particle array than in single particle. The collective lattice resonances can be excited at the wavelength defined mainly by the array period and thus easily tuned in a broad spectral range not being limited by particle permittivity, size, or shape.
关键词: transition metal dichalcogenides,lattice resonance,Kerker effect,molybdenum diselenide,directional scattering,nanoparticle arrays
更新于2025-09-23 15:23:52
-
Controlled Gold Nanoparticle Placement into Patterned Polydimethylsiloxane Thin Films via Directed Self-Assembly
摘要: An economically scalable and reproducible method to assemble nanoparticles (NPs) into ordered arrays with high fidelity remains a fundamental roadblock. Methods like directed self-assembly have shown the highest promise resulting in >85% density of NP-filled prepatterned polymer cavities. This work refines directed self-assembly by controlling the evaporation rate, substrate velocity (deposition rate), and NP diameter resulting in reproducible fabrication of ordered arrays with areas >2 mm × 2 mm and ~100% density of filled cavities. Measured optical spectra showed a blueshift in the localized surface plasmon resonance (LSPR) and surface lattice resonance (SLR) peaks with increasing NP density for both 100 and 150 nm gold (Au) NPs. Discrete dipole approximation (DDA), coupled dipole approximation (CDA), rapid semi-analytical CDA (rsa-CDA), and Mie theory simulations closely matched extinction per nanoparticle (extinction/NP) calculations for measured extinction spectra. An ordered array containing 150 nm AuNPs was used for comparison with rsa-CDA estimates using both polydimethylsiloxane (PDMS) and glass refractive indices (RI) resulting in peak location estimates within 1.7% and comparable relative increases in peak heights. Both the measured and simulated SLR peak heights were shown to significantly increase when the array was on glass as opposed to within PDMS.
关键词: directed self-assembly,extinction spectra,gold nanoparticles,surface lattice resonance,localized surface plasmon resonance
更新于2025-09-12 10:27:22
-
Coupling of deterministically activated quantum emitters in hexagonal boron nitride to plasmonic surface lattice resonances
摘要: The cooperative phenomena stemming from the radiation field-mediated coupling between individual quantum emitters are presently attracting broad interest for applications related to on-chip photonic quantum memories and long-range entanglement. Common to these applications is the generation of electro-magnetic modes over macroscopic distances. Much research, however, is still needed before such systems can be deployed in the form of practical devices, starting with the investigation of alternate physical platforms. Quantum emitters in two-dimensional (2D) systems provide an intriguing route because these materials can be adapted to arbitrarily shaped substrates to form hybrid systems wherein emitters are near-field-coupled to suitable optical modes. Here, we report a scalable coupling method allowing color center ensembles in a van der Waals material (hexagonal boron nitride) to couple to a delocalized high-quality plasmonic surface lattice resonance. This type of architecture is promising for photonic applications, especially given the ability of the hexagonal boron nitride emitters to operate as single-photon sources at room temperature.
关键词: coupling,strain,delocalization,defect,quantum emission,photoluminescence,surface plasmons,hexagonal boron nitride,2D materials,surface lattice resonance
更新于2025-09-11 14:15:04
-
Second harmonic spectroscopy of surface lattice resonances
摘要: Because of their large figures of merit, surface lattice resonances (SLRs) in metal nanoparticle arrays are very promising for chemical and biomolecular sensing, in both liquid and gas media. SLRs are sensitive to refractive index changes both near the surface of the nanoparticles (surface sensitivity) and in the volume between them (bulk sensitivity). Due to its intrinsic surface-sensitivity and a power-law dependence on electric fields, second harmonic generation (SHG) spectroscopy can improve upon both the surface and volume sensitivities of SLRs. In this report on SHG spectroscopy of plasmonic nanoparticles, we show that the SHG signal is greatly increased (up to 450 times) by the SLRs. We also demonstrate very narrow resonances in SHG intensity (~5 nm FWHM). We illustrate how the SHG resonances are highly sensitive to SLRs by varying the fundamental wavelength, angle of incidence, nanoparticle material and lattice constant of the arrays. Finally, we identify an SHG resonance (10 nm FWHM) that is electric dipole forbidden and can be attributed to higher-order multipoles, enhanced by the strong near-fields of SLRs. Our results open up new and very promising avenues for chemical and biomolecular sensing, based on SHG spectroscopy of SLRs.
关键词: Plasmonics,Quadrupoles,Nonlinear optics,Surface lattice resonance
更新于2025-09-09 09:28:46