修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

12 条数据
?? 中文(中国)
  • Dual-mode luminescent core-shell nanoarchitectures for highly sensitive optical nanothermometry

    摘要: Currently, FIR-based luminescent nanothermometry has aroused wide concern for its promising applications in fast-moving objects, harsh environments and microscopic temperature. Synchronously promoting the absolute and relative sensitivities of optical thermometers is one of the significant issues at present. In this work, a new nanothermometry strategy to possess both high absolute and relative sensitivities have been proposed by coupling of thermally-coupled-levels-based technique with non-thermally-coupled-levels method in the core-shell designed nanomaterials. Following this strategy, the core-shell-structured NaGdF4:Yb,Er@ NaYF4:Ce,Tb,Eu nanocrystals have been successfully prepared. Remarkably, the adverse cross-relaxation among different activators is extremely suppressed owing to the spatial separation of Er3+ and Eu3+/Tb3+ activators, being conducive to the realization of both intense green upconverting emissions and yellow downshifting luminescence. Moreover, the temperature-sensitive dual-mode luminescent behaviors of core-shell nanomaterials are systematically studied to probe the possible application in FIR-related luminescent thermometry. Specially, the thermally-coupled-levels-based FIR of Er3+ : 2H11/2 / 4I15/2 to Er3+ : 4S3/2 / 4I15/2 and non-thermally-coupled-levels-based FIR of Eu3+ : 5D0 / 7F2 to Tb3+ : 5D4 / 7F6 are proved to be applicable as temperature probes, leading to the achievement of dual-mode temperature sensing. Using the pre-designed core@shell nanoarchitectures, the absolute sensitivity can reach up to 1.02% K-1 based on Eu3+/Tb3+ Stokes emissions and the relative sensitivity could reach as high as 1.12% K-1 based on Er3+ anti-Stokes luminescence. We believe that this study provides a valid approach for developing high-performance optical nanothermometers.

    关键词: Optical nanothermometry,Rare-earth luminescent materials,Dual-mode emission,Core-shell nanoarchitectures

    更新于2025-11-20 15:33:11

  • Luminescent materials of covalent grafting lanthanide complexes to the synthetic clays

    摘要: Lanthanide complex-based luminescent organic-inorganic hybrid materials are highly interesting for a broad range of application fields. The combination of lanthanide complexes with the synthetic clay, Laponite, is now attracting the interest of scientists due to the unique features of the synthetic clay. However, most of the reported literatures are involved with the adsorption of lanthanide complexes on the clay particles. Taking the covalent incorporation of lanthanide complex into clay and satisfying the further coordinate with central lanthanide ion into account, herein, we reported a facile strategy of covalent grafting lanthanide complexes to the clay via the reaction of the terminal triethoxy groups of triethoxysilylated ligand (phenSi) and the surface OH groups of the clay. The successful grafting of the complexes was confirmed by the FT-IR spectra, 29Si solid-state NMR spectra and the luminescent data. And the nitrogen atoms of Phen moieties which are covalently grafted to the clay provide the chance to prepare luminescent hybrid materials with larger coordination number.

    关键词: covalent grafting,lanthanide complexes,Laponite,luminescent materials

    更新于2025-11-14 15:18:02

  • Lanthanide complexes with 2-(tosylamino)-benzylidene-N-(aryloyl)hydrazones - universal luminescent materials

    摘要: Lanthanide complexes Ln(L1)(HL1) (Ln = Lu, Yb, Er, Gd, Eu, Sm) and Ln(L2)(HL2) (Ln = Lu, Yb, Gd, Eu) with 2-(tosylamino)-benzylidene-N-(aryloyl)hydrazones (H2L1, aryloyl = 2-hydroxybenzoyl; H2L2, aryloyl = Isonicotinoyl) were obtained with the aim to explore them as new luminescent materials. They were found to form monomeric species independently on the aryloyl nature, their crystal structures were determined from single crystal X-ray data (Yb(L2)(HL2)·0.5(C2H5OH)), as well as from powder X-ray data by Rietveld refinement (Eu(L1)(HL1)). Ytterbium complexes exhibited intense luminescence, which allowed using them in host-free OLEDs, which demonstrated remarkable efficiency of NIR electroluminescence (50 μW/W) at low voltage (5V). Special mechanism of europium luminescence quenching allowed using europium complexes as luminescent thermometers, which demonstrated very high sensitivity up to 12%/K. The theory of luminescence thermometry based on three-level system was proposed which allowed predicting sensitivity with high accuracy (error within 20%).

    关键词: lanthanide complexes,OLEDs,luminescent thermometry,NIR emission,luminescent materials

    更新于2025-09-23 15:23:52

  • Fabrication and Investigation of Two-Component Film of 2,5-Diphenyloxazole and Octafluoronaphthalene Exhibiting Tunable Blue/Bluish Violet Fluorescence Based on Low Vacuum Physical Vapor Deposition Method

    摘要: Organic luminescent materials play an important role in the fields of light-emitting diodes and fluorescent imaging. Moreover, new synthetic approaches towards π-conjugated molecular systems with high fluorescence quantum efficiency are highly desired. Herein, different 2,5-diphenyloxazole-octafluoronaphthalene (DPO-OFN) films with tunable fluorescence have been prepared by Low Vacuum Physical Vapor Deposition (LVPVD) method. DPO-OFN films showed some changed properties, such as molecular vibration and fluorescence. All films exhibited blue/bluish violet fluorescence and showed blueshift, in comparison with pristine DPO. This work introduced a new method to fabricate two-component molecular materials with tunable blue/bluish violet luminescence properties and provided a new perspective to prepare organic luminescent film materials, layer film materials, cocrystal materials, and cocrystal film materials. Importantly, these materials have potential applications in the fields of next generation of photofunctional materials.

    关键词: blue/bluish violet luminescence,organic luminescent materials,tunable fluorescence,two-component film,low vacuum physical vapor deposition

    更新于2025-09-23 15:22:29

  • Photoluminescence of silicon vacancy centres as conceptual indicator for the condition of diamond protection coatings

    摘要: Due to the outstanding properties polycrystalline diamond coatings are used for wear protection on tools and work pieces. Thereby adhesive and abrasive wear as well as spalling of the coating can lead to damage and downtimes of the working machines. By depositing silicon doped multilayer diamond coatings, an indication of the condition of the coatings could be achieved. In this study the behaviour and transmission of the zero-phonon line of silicon vacancy centres is investigated in doped multilayer diamond coatings. The in-situ silicon doped diamond coatings were synthesized in use of an atmospheric laser-based plasma chemical vapour deposition. Photoluminescence measurements were performed with an excitation area of 18 mm2 and a wavelength of 248 nm. While the photoluminescence of the doped layers conceptually proves suitability as an indicator for the condition of the coating, the undoped diamond layers in the coatings show a high transmissivity to the zero-phonon line for the used parameters.

    关键词: Wear,Luminescent materials,Protective coating,Diamond films,Chemical vapour deposition

    更新于2025-09-23 15:21:21

  • White luminescent single-crystalline chlorinated graphene quantum dots

    摘要: White luminescent materials have been generating much excitement because of their wide-ranging potential applications. However, challenging synthesis, cytotoxicity and performance of current reported white luminescent materials still hinder their potential applications. Owing to their non-toxicity, excellent optical properties, and amenability to surface modification, white-light-emitting graphene quantum dots (WGQDs) are considered to be a next-generation white luminescent material to replace these above-mentioned conventional materials. The inherent challenge in WGQDs is their massive defects are known to give poor white optical properties. In the proof-of-concept, we designed and synthesized a novel WGQDs via a solvothermal molecular fusion route. The modulation of chlorine doping amount and reaction temperature gives the WGQDs a single-crystalline structure, bright white fluorescence and novel white phosphorescence performance for the first time. An optimum fluorescence quantum yield of WGQDs is 34%, which exceeds the majority of reported WGQDs and other white luminescent materials. The WGQDs display broad-spectrum absorption within almost the entire visible light region, broad full width at half maximum and extend their phosphorescence emission to the entire white long-wavelength region. This unique dual-mode optical characteristic of the WGQDs enlarges their applications in white light emission devices, cell nuclei imaging, and information encryption.

    关键词: solvothermal molecular fusion,white luminescent materials,fluorescence,graphene quantum dots,phosphorescence,chlorine doping

    更新于2025-09-23 15:19:57

  • Tailoring of structural and photoluminescence emissions by Mn and Cu co-doping in 2D nanostructures of ZnS for the visualization of latent fingerprints and generation of white light

    摘要: Tailoring of structural and photoluminescence emissions by Mn and Cu co-doping in 2D nanostructures of ZnS for the visualization of latent fingerprints and generation of white light. There has been a recent demand for the development of luminescent materials for visualizations of latent fingerprints (LFPs) for achieving enhanced security. Also recently, there has been a new research trend in the development of 2D materials from non-layered semiconductors with strong luminescence properties in the visible region. The conventional growth process of luminescent materials limits their capacity of tuning the structure and light emission efficiency. However, multi-atom doping provides an additional degree of freedom to tune the basic morphologies and optical properties of luminescent semiconductors by controlling the defect levels. Here, by using a simple chemical technique, multi-atom (Cu and Mn) doped rarely reported 2D nanosheets of zinc sulphide (ZnS) have been grown. Thus, a stable high fluorescence efficiency of ~62% in the visible region has been realized for the visualization of LFPs. Furthermore, near-white light emission has been demonstrated by coating the synthesized materials with a suitable doping concentration on a commercially available UV-LED chip. The proposed technique may be utilized further to build up other 2D nanostructured materials for multifunctional applications in solid state lighting, LFPs and forensic science.

    关键词: ZnS,2D materials,latent fingerprints,co-doping,luminescent materials,white light emission

    更新于2025-09-19 17:15:36

  • Fluorolytic Sol–Gel Synthesis of Nanometal Fluorides: Accessing New Materials for Optical Applications

    摘要: The potential of fluorolytic sol–gel synthesis for a wide variety of applications in the field of optical materials is reviewed. Based on the fluorolytic sol–gel synthesis of nanometal fluorides, sols of complex fluorometalates have become available that exhibit superior optical properties over known classical binary metal fluorides as, for instance, magnesium fluoride, calcium fluoride, or strontium fluoride, respectively. The synthesis of transparent sols of magnesium fluoroaluminates of the general composition MgxAlFy, and fluoroperovskites, [K1?xNax]MgF3, is reported. Antireflective coatings fabricated from MgF2, CaF2, MgxAlFy, and [K1?xNax]MgF3 sols and their relevant properties are comprehensively described. Especially the heavier alkaline earth metal fluorides and the fluorperovskites crystallizing in a cubic crystal structure are excellent hosts for rare earth (RE) metals. Thus, the second chapter reflects the synthesis approach and the properties of luminescent systems based on RE-doped alkaline earth metal fluorides and [K1?xNax]MgF3 phases.

    关键词: nanometal fluorides,antireflective coatings,sol–gel synthesis,luminescent materials

    更新于2025-09-19 17:15:36

  • Controlling multiphoton excited energy transfer from Tm <sup>3+</sup> to Yb <sup>3+</sup> ions by a phase-shaped femtosecond laser field

    摘要: The ability to control the energy transfer in rare-earth ion-doped luminescent materials is very important for various related application areas such as color display, bio-labeling, and new light sources. Here, a phase-shaped femtosecond laser field is first proposed to control the transfer of multiphoton excited energy from Tm3+ to Yb3+ ions in co-doped glass ceramics. Tm3+ ions are first sensitized by femtosecond laser-induced multiphoton absorption, and then a highly efficient energy transfer occurs between the highly excited state Tm3+ sensitizers and the ground-state Yb3+ activators. The laser peak intensity and polarization dependences of the laser-induced luminescence intensities are shown to serve as proof of the multiphoton excited energy transfer pathway. The efficiency of the multiphoton excited energy transfer can be efficiently enhanced or completely suppressed by optimizing the spectral phase of the femtosecond laser with a feedback control strategy based on a genetic algorithm. A (1 + 2) resonance-mediated three-photon excitation model is presented to explain the experimental observations. This study provides a new way to induce and control the energy transfer in rare-earth ion-doped luminescent materials, and should have a positive contribution to the development of related applications.

    关键词: energy transfer,rare-earth ions,femtosecond laser,luminescent materials,multiphoton absorption

    更新于2025-09-12 10:27:22

  • Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes

    摘要: Near-infrared luminescent materials exhibit unique photophysical properties that make them crucial components in photonic, optoelectronic and biological applications. As broadband near infrared phosphors activated by transition metal elements are already widely reported, there is a challenge for next-generation materials discovery by introducing rare earth activators with 4f-5d transition. Here, we report an unprecedented phosphor K3LuSi2O7:Eu2+ that gives an emission band centered at 740 nm with a full-width at half maximum of 160 nm upon 460 nm blue light excitation. Combined structural and spectral characterizations reveal a selective site occupation of divalent europium in LuO6 and K2O6 polyhedrons with small coordination numbers, leading to the unexpected near infrared emission. The fabricated phosphor-converted light-emitting diodes have great potential as a non-visible light source. Our work provides the design principle of near infrared emission in divalent europium-doped inorganic solid-state materials and could inspire future studies to further explore near-infrared light-emitting diodes.

    关键词: divalent europium,Near-infrared luminescent materials,4f-5d transition,light-emitting diodes,phosphor

    更新于2025-09-11 14:15:04