修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
  • 2014
研究主题
  • solar cell
  • hybrid-resonant PWM switching
  • PWM switching
  • MPPT
  • resonant converter
  • solar power
  • Geostationary satellite images
  • Global and direct solar radiation
  • Meteorological station
  • validation
应用领域
  • Electrical Engineering and Automation
  • New Energy Science and Engineering
  • Optoelectronic Information Science and Engineering
  • Optoelectronic Information Materials and Devices
  • Applied Physics
机构单位
  • National technical University “Kharkiv Polytechnic Institute”
  • University of évora
  • Fraunhofer Institute for Solar Energy Systems ISE
  • University of Tunis El Manar
  • Zeal College of Engineering and Research
  • Northern (Arctic) Federal University named after M.V. Lomonosov
  • Cochin University College of Engineering
  • National Renewable Energy Laboratory
  • NED University
  • Universidad Veracruzana
4089 条数据
?? 中文(中国)
  • Solar cells sensitized with porphyrin dyes with a carbazole donor: The effects of an auxiliary benzothiadiazole acceptor and bulky substituents on the donor

    摘要: Three porphyrin sensitizers XW54–XW56 containing a carbazole donor have been designed and synthesized by introducing a benzothiadiazole (BTD) unit as the auxiliary electron acceptor to extend the absorption spectra and/or bulky dihexyloxyphenyl groups into the carbazole unit to suppress dye aggregation and improve the photovoltage (Voc). The BTD unit incorporated in XW54 obviously broadens and red-shifts the absorption threshold to ca. 700 nm, as compared with that of 650 nm observed for XW1. Thus, XW54 exhibits a much broader monochromatic photon-to-electron conversion efficiency (IPCE) spectrum with an extremely red-shifted onset wavelength of 780 nm, resulting in a photocurrent density (Jsc) of 11.60 mA cm?2, higher than that of XW1. Unfortunately, the Voc value was decreased owing to the more severe dye aggregation caused by the large conjugation framework induced by the presence of the BTD unit. As a result, XW54 shows an efficiency of 6.26%, slightly higher than that of 6.11% obtained for XW1. On the other hand, with the bulky dihexyloxyphenyl donor groups introduced to XW55, a highest Voc of 860 mV was achieved, which can be ascribed to the efficient prevention of charge recombination and suppression of dye aggregation. Thus, XW55-based cells exhibit an improved e?ciency of 6.60%. On the basis of XW54 and XW55, two bulky dihexyloxyphenyl groups and a BTD unit were simultaneously introduced to XW56, affording a highest efficiency of 7.03%, with the Jsc and Voc values of 12.5 mA cm?2 and 785 mV, respectively. These results compose a novel approach for developing e?cient dye-sensitized solar cells (DSSCs) by simultaneously introducing bulky dihexyloxyphenyl groups and a benzothiadiazole unit, which may synergistically broaden the absorption spectra and suppress the dye aggregation, resulting in improved photocurrent and photovoltage.

    关键词: Dye-sensitized solar cells,Sensitizers,Porphyrin,Bulky groups,Carbazole

    更新于2025-11-19 16:56:42

  • <i>In Situ</i> 2D Perovskite Formation and the Impact of the 2D/3D Structures on Performance and Stability of Perovskite Solar Cells

    摘要: Hybrid organic and inorganic perovskite solar cells suffer from the lack of long-term stability and this negatively impacts the widespread application of this emerging and promising photovoltaic technology. In this work, aiming to increase the stability of perovskite films based on CH3NH3PbI3 and to deep understand the formation of 2D structures, solutions of alkylammonium chlorides containing 8, 10 and 12 carbons were introduced during the spin-coating on the surface of 3D perovskite films leading to the in situ formation of 2D structures. It was possible to identify the chemical formulae of some 2D structures formed by XRD and UV-Vis analysis of the modified films. Interestingly, the increase in the stability of the CH3NH3PbI3 films due to the formation of a 2D+3D perovskite network was only possible in planar TiO2 substrates. The increase on stability of the CH3NH3PbI3 films follows the surfactant molecule order: octylammonium (8C) > decylammonium (10C) > dodecylammonium (12C) chlorides > standard. We observed an increase of 17.6 % in the lifetime of the devices assembled with modified perovskite film compared to our standard device, which is directly linked to the improvement of the charge carrier lifetimes obtained from Time-Correlated Single Photon Counting (TCSPC) measurements.

    关键词: Energy Conversion,Photovoltaics,Stability,2D perovskite,Perovskite Solar Cell

    更新于2025-11-19 16:56:35

  • Manipulating the Phase Distributions and Carrier Transfers in Hybrid Quasi-Two-Dimensional Perovskite Films

    摘要: Quasi two-dimensional perovskites are promising alternatives to conventional three-dimensional perovskites because of their high stability and easy tunability. However, controlling the phase distribution according to device architecture remains a major challenge. Here, the manipulation of phase purity and vertical distribution proven by ultrafast transient absorption spectroscopy, and their effect on device characteristics are reported. By adding ethyl acetate as antisolvent, the growth direction of the perovskite film is flipped. CH3NH3Cl and dimethyl sulfoxide are used to slow the growth rate of the crystal, which gives better phase purity. The direction of carrier transfer is tuned accordingly. It is found that solar cell performance is more sensitive to phase purity relative to vertical distribution. These findings are of importance for the applications of quasi-2D perovskites in different types of devices that require to change phase purity and vertical distribution.

    关键词: solar cells,carrier transfer,vertical distribution,phase purity,quasi-2D perovskite

    更新于2025-11-19 16:56:35

  • Robust Janus fibrous membrane switchable infrared radiation properties for potential building thermal management application

    摘要: Buildings heating and cooling consumes a large part of global energy, contributing to aggravating the global warming and energy crisis. It is strongly desired but still lacking in realizing heating and cooling functions within the same material without intensive energy input. Herein, a Janus thermal management membrane with trilayer structure has been prepared by using the ZnO nanorods array-coated cellulose (ZnO-NRs@cellulose), ultralong MnO2 nanowires (UL-MnO2-NWs) and silver nanowires (Ag-NWs) as building blocks. The ZnO-NRs@cellulose fiber layer with rough surface was fabricated by a hydrothermal progress based on the controlled growth of ZnO nanorods on cellulose surfaces. Subsequently, the hydrothermally synthesized UL-MnO2-NWs and Ag-NWs were filtered onto the ZnO-NRs@cellulose layer in turn, forming laminated Janus membrane. The Janus membrane exhibited asymmetric radiation properties on each side: the ZnO-NRs@cellulose side of the Janus membrane shows high solar radiation reflectivity and high infrared emissivity to minimize heat input from sun and enhance the heat dissipation in hot environment, while Ag-NWs side of that exhibits relatively high solar radiation absorption rate and low infrared emissivity for enhancing heat input from sun and reducing the heat radiation loss in cold environment. The introduction of UL-MnO2-NWs and Ag-NWs into the laminated Janus membrane endows the membrane with high tensile stress of 61.4 MPa. Moreover, the strong compatible entanglement among three layers of the Janus membrane causes the satisfactory interface stability. Due to the special asymmetric radiation performance, excellent interfacial compatibility, and high mechanical stability, such Janus membrane might be potential useful in building energy saving, personal thermal management and other facilities.

    关键词: solar radiation,infrared radiation,laminated structure,MnO2 nanowire,Ag nanowire,Janus membrane

    更新于2025-11-19 16:56:35

  • Colloidally synthesized defect-rich $$\hbox {MoSe}_{2}$$ MoSe 2 nanosheets for superior catalytic activity

    摘要: Transition metal dichalcogenide (TMD) nanosheets (NSs) with defect-rich and vertically aligned edges are highly advantageous for various catalytic applications. However, colloidal synthesis of defect-rich NSs with thickness variation has been a challenging task. Here, we report a colloidal synthesis of 2H-MoSe2 NSs having a large number of defects and vertically aligned edges, where the thickness is varied by changing the amount of coordinating solvent. The Se-vacancies in these NSs have introduced defect sites which are corroborated by the presence of additional vibration modes in Raman spectra. These NSs exhibit electrocatalytic hydrogen evolution reaction performances with a low overpotential (210–225 mV) at 10 mA cm?2 current density and a small Tafel slope (54–68 mV per decade). Moreover, these MoSe2 NSs are also employed as counter electrodes (CEs) for the fabrication of dye sensitized solar cells via a cost-effective and simplified procedure. The power conversion efficiencies of 7.02 ± 0.18%, comparable with Pt CE (7.84 ± 0.10%) could be routinely achieved. These results demonstrate a novel synthetic strategy to prepare layered TMDs with superior catalytic applications.

    关键词: counter electrode,Transition metal dichalcogenides,dye sensitized solar cells,MoSe2 nanosheets,hydrogen evolution reaction

    更新于2025-11-19 16:56:35

  • Solar water splitting over Rh <sub/>0.5</sub> Cr <sub/>1.5</sub> O <sub/>3</sub> -loaded AgTaO <sub/>3</sub> of a valence-band-controlled metal oxide photocatalyst

    摘要: Improvement of water splitting performance of AgTaO3 (BG 3.4 eV) of a valence-band-controlled photocatalyst was examined. Survey of cocatalysts revealed that a Rh0.5Cr1.5O3 cocatalyst was much more effective than Cr2O3, RuO2, NiO and Pt for water splitting into H2 and O2 in a stoichiometric amount. The optimum loading amount of the Rh0.5Cr1.5O3 cocatalyst was 0.2 wt%. The apparent quantum yield (AQY) at 340 nm of the optimized Rh0.5Cr1.5O3(0.2 wt%)/AgTaO3 photocatalyst reached to about 40%. Rh0.5Cr1.5O3(0.2 wt%)/AgTaO3 gave a solar to hydrogen conversion efficiency (STH) of 0.13% for photocatalytic water splitting under simulated sunlight irradiation. Bubbles of gasses evolved by the solar water splitting were visually observed under atmospheric pressure at room temperature.

    关键词: Rh0.5Cr1.5O3 cocatalyst,valence-band-controlled photocatalyst,solar water splitting,apparent quantum yield,AgTaO3,solar to hydrogen conversion efficiency

    更新于2025-11-19 16:51:07

  • Dual-band luminescent solar converter-coupled dye-sensitized solar cells for high performance semi-transparent photovoltaic device

    摘要: We demonstrate a high-performance semi-transparent solar cell using a dye-sensitized solar cell (DSSC) coupled with a luminescent solar converter (LSC) that absorbs a dual band. We present an architecture of a sandwich-type, downshift (DS) LSC / DSSC / upconversion (UC) LSC. The DS LSC, including anthracene, converts ultraviolet light to visible light, and the UC LSC, which contains a dye pair of meso-tetraphenyl-tetrabenzoporphine palladium / 9,10-bis-penylethynyllanthrancane, converts near-infrared light into visible light. Thus, the dual band LSC improved the power conversion efficiency (PCE) of the DSSC without a significant decrease in visible transmittance. We optimize the concentration of the fluorescence dye to obtain maximum photoluminescence in each LSC. We also optimize backward scattering by introducing nanoparticle scatterers in UC LSC. The dual LSC-DSSC showed an average visible transmittance of 42% and achieved an PCE of up to 7.8%. Our incorporation of broadband-wavelength-harvestable LSCs with a DSSC presents a direction for semi-transparent photovoltaic devices.

    关键词: Luminescence solar concentrator,Semi-transparent photovoltaic devices,Downshift,Photon upconversion,Dye-sensitized solar cells

    更新于2025-11-19 16:46:39

  • A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells

    摘要: Minimizing the interface loss of perovskite solar cells is critical to achieving high photovoltaic performance, and intensive research is underway on interfacial engineering in this regard. In this work, we introduce a ZnO nanoparticles (ZnO NPs) interlayer between phenyl-C61-butyric acid methyl ester (PCBM) and a metal electrode in order to reduce the interface loss due to charge recombination and device degradation, and also investigate the dependence of device performance on the thickness and morphology of the PCBM and PCBM/ZnO electron transport bilayer. After achieving optimized PCBM and ZnO thickness, the PCBM/ZnO bilayer-based devices reached an average power conversion efficiency of 15.63% (Max. 16.39%) with an open circuit voltage of 1.05 V, short circuit current density of 18.69 mA cm-2, and fill factor of 79.95%. In addition, hysteresis behavior and atmospheric stability are significantly improved by the incorporation of a PCBM/ZnO bilayer. Therefore, the implementation of a PCBM/ZnO electron transport bilayer is a promising approach toward achieving a high-efficiency PSC with stable power output (low J-V hysteresis) and durability.

    关键词: ZnO nanoparticles,interfacial engineering,stable perovskite solar cells,interface loss,high-efficiency perovskite solar cells,electron transport bilayer

    更新于2025-11-19 16:46:39

  • 2D Photonic Crystal Nanodisk Array as Electron Transport Layer for Highly Efficient Perovskite Solar Cells

    摘要: Perovskite solar cells (PSCs) are currently exhibiting reproducible high efficiency; the manufacturing of low cost, scalable electron transport layers (ETLs) is becoming increasingly important. However, this remains a challenge for electron transport layers that exhibit excellent optical/electrical properties while being a thin film of simple morphology. Here we demonstrate the PSC of a 2D photonic crystal nanodisk (ND) array ETL that is compact, but greatly enhances light harvesting. The ND array is fabricated by nanosphere lithography using a monolayer of self-assembled polymer spheres as a physical mask. We fabricate ND arrays of various lattice constants simply by controlling the size of the polymer spheres. Optimal ND arrays exhibit strong forward scattering and optical confinement effects, greatly improving light harvesting in the perovskite layer. We also observe that the ND array improves charge transport by reducing contact resistance with the perovskite layer. ND array ETL PSCs reach 19% maximum power conversion efficiency, with low photocurrent-voltage hysteresis and stable photocurrent output.

    关键词: optical confinement,2D photonic crystals,nanodisk array,electron transport layer,perovskite solar cells,forward scattering

    更新于2025-11-19 16:46:39

  • Investigation of sol-gel and nanoparticle-based NiOx hole transporting layer for high-performance planar perovskite solar cells

    摘要: We conduct a comprehensive study on and comparison of sol-gel and nanoparticles (NPs)-based nickel oxide hole-transporting layer (HTL) for high-performance planar perovskite solar cells (PSCs). The characteristics and film properties of sol-gel and NPs were systemically investigated using ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and photoluminescence (PL), and its effect on device-performance was also examined using J-V characteristics, quantum-efficiency, and the VOC dependence of the light intensity. Through this comparison of two types of HTL and their device-performances, these studies can provide sufficient and robust information for nickel oxide-based PSCs, and furthermore, the overall results and discussions can be useful for high-performance PSCs.

    关键词: Nickel oxide,Planar perovskite solar cells,Hole transporting layer,Sol-gel,Nanoparticles

    更新于2025-11-19 16:46:39