修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

112 条数据
?? 中文(中国)
  • Tunable passively Q-switched ytterbium-doped fiber laser using MoWS2/rGO nanocomposite saturable absorber

    摘要: We demonstrated a tunable Q-switched ytterbium-doped fiber laser (YDFL) using MoWS2/rGO nanocomposite as passive saturable absorber. Further, the Mo1?xWxS2/rGO nanosheets, with x proportion of 0.2, are synthesized using hydrothermal exfoliation technique. The proposed nanocomposite-PVA based thin film is fabricated by mixing the MoWS2/rGO nanosheets with polyvinyl alcohol (PVA). The fabricated thin film is sandwiched between two fiber ferrules to realize the proposed saturable absorber (SA). Further, the proposed MoWS2/rGO-PVA based thin film SA exhibits a fast relaxation time and a high damage threshold which are suitable to realize a Q-switched pulsed laser with a tunable wavelength range of 10 nm that extends from 1028 nm to 1038 nm. For the highest pump power of 267.4 mW, the generated Q-switched pulses exhibit a narrow pulse width of 1.22 μs, the pulse repetition rate of 90.4 kHz, the highest pulse energy of 2.13 nJ and its corresponding average power of 0.193 mW. To the best of author’s knowledge, this is the first realization of a tunable Q-switching fiber laser in a 1 μm wavelength using MoWS2/rGO nanocomposite saturable absorber.

    关键词: Saturable absorber,Molybdenum,Tungsten disulfide,Q-switched fiber laser,Transition metal dichalcogenides

    更新于2025-11-28 14:24:03

  • Optical Nonlinearity of ZrS2 and Applications in Fiber Laser

    摘要: Group VIB transition metal dichalcogenides (TMDs) have been successfully demonstrated as saturable absorbers (SAs) for pulsed fiber lasers. For the group comprising IVB TMDs, applications in this field remain unexplored. In this work, ZrS2-based SA is prepared by depositing a ZrS2 nanostructured film onto the side surface of a D-shaped fiber. The nonlinear optical properties of the prepared SA are investigated, which had a modulation depth of 3.3% and a saturable intensity of 13.26 MW/cm2. In a pump power range of 144–479 mW, the Er-doped fiber (EDF) laser with ZrS2 can operate in the dual-wavelength Q-switching state. The pulse duration declined from 10.0 μs down to 2.3 μs. The single pulse energy reached 53.0 nJ. The usage of ZrS2 as a SA for pulse generation in fiber lasers is presented for the first time. Compared to the experimental results of dual-wavelength Q-switched fiber lasers with two-dimensional (2D) materials, our laser performance was better. Our work indicates that the group comprising IVB TMD ZrS2 has bright prospects for nonlinear optical applications.

    关键词: transition metal dichalcogenides,saturable absorbers,ZrS2

    更新于2025-11-28 14:24:03

  • Molybdenum tungsten disulphide (MoWS <sub/>2</sub> ) as a saturable absorber for a passively Q-switched thulium/holmium-codoped fibre laser

    摘要: In this work, a passively Q-switched Thulium/Holmium-doped fibre laser (THDFL) using a molybdenum tungsten disulphide (MoWS2) saturable absorber (SA) is proposed and demonstrated. The MoWS2 nanosheets are prepared by hydrothermal exfoliation and then suspended in a polyvinyl alcohol (PVA) thin film host. Q-switching of the THDFL at a maximum 1550 nm pump power of 445.2 mW gives a maximum repetition rate and minimum pulse width of 36.3 kHz and 2.8 μs with a corresponding pulse energy of 86.4 nJ and peak power of 31.1 mW. The MoWS2 based Q-switched THDFL’s output has a very high signal-to-noise value of ~ 62.2 dB which strongly indicates that the laser is working in a stable operation. To the best of our knowledge, this is the first demonstration of MoWS2 as a passive SA in a THDFL for operation in the 2.0 μm region. The proposed laser would have significant medical and sensing applications, particularly at the biologically active 2.0–2.1 μm regions.

    关键词: thulium/holmium-doped fibre,transition metal dichalcogenides,Saturable absorber,Q-switching

    更新于2025-11-28 14:23:57

  • Colloidally synthesized defect-rich $$\hbox {MoSe}_{2}$$ MoSe 2 nanosheets for superior catalytic activity

    摘要: Transition metal dichalcogenide (TMD) nanosheets (NSs) with defect-rich and vertically aligned edges are highly advantageous for various catalytic applications. However, colloidal synthesis of defect-rich NSs with thickness variation has been a challenging task. Here, we report a colloidal synthesis of 2H-MoSe2 NSs having a large number of defects and vertically aligned edges, where the thickness is varied by changing the amount of coordinating solvent. The Se-vacancies in these NSs have introduced defect sites which are corroborated by the presence of additional vibration modes in Raman spectra. These NSs exhibit electrocatalytic hydrogen evolution reaction performances with a low overpotential (210–225 mV) at 10 mA cm?2 current density and a small Tafel slope (54–68 mV per decade). Moreover, these MoSe2 NSs are also employed as counter electrodes (CEs) for the fabrication of dye sensitized solar cells via a cost-effective and simplified procedure. The power conversion efficiencies of 7.02 ± 0.18%, comparable with Pt CE (7.84 ± 0.10%) could be routinely achieved. These results demonstrate a novel synthetic strategy to prepare layered TMDs with superior catalytic applications.

    关键词: counter electrode,Transition metal dichalcogenides,dye sensitized solar cells,MoSe2 nanosheets,hydrogen evolution reaction

    更新于2025-11-19 16:56:35

  • Dense Electron-Hole Plasma Formation and Ultra-Long Charge Lifetime in Monolayer MoS <sub/>2</sub> via Material Tuning

    摘要: Many-body interactions in photoexcited semiconductors can bring about strongly-interacting electronic states, culminating in the fully-ionized matter of electron-hole plasma (EHP) and electron-hole liquid (EHL). These exotic phases exhibit unique electronic properties, such as metallic conductivity and metastable high photoexcitation density, which can be the basis for future transformative applications. However, the cryogenic condition required for its formation has limited the study of dense plasma phases to a purely academic pursuit in a restricted parameter space. This paradigm can potentially change with the recent experimental observation of these phases in atomically thin MoS2 and MoTe2 at room temperature. A fundamental understanding of EHP and EHL dynamics is critical for developing novel applications on this versatile layered platform. In this work, we studied the formation and dissipation of EHP in monolayer MoS2. Unlike previous results in bulk semiconductors, our results reveal that electro-mechanical material changes in monolayer MoS2 during photoexcitation play a significant role in dense EHP formation. Within the free-standing geometry, photoexcitation is accompanied by an unconstrained thermal expansion, resulting in a direct-to-indirect gap electronic transition at a critical lattice spacing and fluence. This dramatic altering of the material’s energetic landscape extends carrier lifetimes by 2 orders of magnitude and allows the density required for EHP formation. The result is a stable dense plasma state that’s sustained with modest optical photoexcitation. Our findings pave the way for novel applications based on dense plasma states in 2D semiconductors.

    关键词: 2D materials,Dense Electron-Hole Plasma,Bandgap Renormalization,MoS2,Transition Metal Dichalcogenides,Direct to Indirect Bandgap Transition

    更新于2025-09-23 15:23:52

  • Lattice Zenneck Modes on Subwavelength Antennas

    摘要: Optical resonances in isolated nanoparticles made out of commonly occurring materials with high optical losses, such as transition metal dichalcogenides, germanium, carbide, and others, are weak and not sufficient for field enhancement and competing with plasmonic resonances in noble metal nanoparticles. This work presents a novel approach to achieve strong resonances in the arrays of such nanoparticles with large optical losses and points to their potential for efficient light control in ultra-thin optical elements, sensing, and photovoltaic applications. Materials with large imaginary part of permittivity (LIPP) are studied and nanostructures of these materials are shown to support not only surfaces modes, known as Zenneck waves, but also modes localized on the subwavelength particle. This approach opens up the possibility of exciting strong localized nanoparticle resonances without involving plasmonic or high-refractive-index materials. Arranging LIPP particles in a periodic array plays a crucial role allowing for collective array resonances, which are shown to be much stronger in particle array than in single particle. The collective lattice resonances can be excited at the wavelength defined mainly by the array period and thus easily tuned in a broad spectral range not being limited by particle permittivity, size, or shape.

    关键词: transition metal dichalcogenides,lattice resonance,Kerker effect,molybdenum diselenide,directional scattering,nanoparticle arrays

    更新于2025-09-23 15:23:52

  • Growth Order-Dependent Strain Variations of Lateral Transition Metal Dichalcogenide Heterostructures

    摘要: Understanding the heterojunction of a lateral heterostructured transition metal dichalcogenide (hTMD) is important to take advantage of the combined optoelectronic properties of individual TMDs for various applications but, however, is hampered by mingled effects from lattice mismatch and substrate interaction. Here, we systematically investigated the strain occurring at lateral hTMDs consisting of molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) prepared by chemical vapor deposition. Comparison of homologous TMDs and hTMDs from controlled growth order revealed systematic change in photoluminescence behavior depending on substrate interaction and relative lattice mismatch. Near the heterojunction, a TMD with a larger lattice constant (a) exhibits photoluminescence (PL) red-shift, whereas a TMD with smaller a shows an opposite trend owing to lattice-induced strain. These effects are augmented in a subtractive or additive manner by tensile strain from the substrate interaction. Moreover, comparison of PLs revealed that the shell region grown from the core edges exhibits weak substrate interaction contrasted by that of a shell region independently grown on a shell. This study provides detailed understandings of the heterojunction at a lateral hTMD for various applications.

    关键词: photoluminescence,lateral heterostructure,strain,transition metal dichalcogenides,chemical vapor deposition

    更新于2025-09-23 15:23:52

  • Valley and spin splitting in monolayer TX2/antiferromagnetic MnO (T=Mo, W; X=S, Se) van der Waals heterostructures

    摘要: The electronic structure of monolayer MoS2, WS2, MoSe2 and WSe2 on top of antiferromagnetic MnO(111) is investigated systematically by first-principles calculations. It is found that the time-reversal symmetry is broken by the stacking on MnO that leads to the valley polarization. The valley splitting of MoS2/MnO, WS2/MnO, MoSe2/MnO and WSe2/MnO is 161, 193, 171 and 125 meV for K point, and 18 to 253 meV for K' point. The pattern of stacking also induces p- or n-type doping of MoS2, revealing that the conductivity of the heterostructues could be tuned by stacking on MnO. Besides, we also calculate electronic structures of WS2/MnO, MoSe2/MnO and WSe2/MnO heterostructures in the configuration of Mn-terminated (III), and find the spin splitting at K point is 553, 324 and 481 meV, and 215, 9 and 284 meV for K' point, respectively. Furthermore, the termination of MnO substrate can switch the spin splitting of monolayer MoS2, WS2, MoSe2 and WSe2. The spin splitting of MoS2/MnO for six possible interface configurations is varied from 24 to 291 meV for K point, and 18 to 253 meV for K' point. The results present a new type of novel heterostructure that has potential applications in the spintronic and valleytronic devices.

    关键词: Two dimensional materials,Heterostructure,Transition metal dichalcogenides,First-principles calculations

    更新于2025-09-23 15:23:52

  • 2D Schottky Junction between Graphene Oxide and Transition-Metal Dichalcogenides: Photoresponsive Properties and Electrocatalytic Performance

    摘要: 2D graphene is conductor and not a semiconductor. 2D transition—metal dichalcogenides (TMD) is a semiconductor and not a conductor. Preparing 2D composite material that simultaneously possesses both advantages of graphene and TMD has proven to be challenging. In this work, both 2D-WS2/2D-GO and 2D-MoS2/2D-GO composites with few layer thickness are synthesized. The electronic structure indicates a high content of Mo4+ 3d5/2 and W4+4f7/2 with lower binding energy in the 2D composite, which is ascribed to partial loss of surface sulfur atoms in 2D composites and the newly formed heteroatomic bond of CWS and CMoS. The Schottky junction between 2D-GO and 2D-TMD (2D G-T junction) is established and exhibits obvious photoelectric responses. Superior electrocatalytic properties of the two 2D-composites are attributable to the 2D Schottky Junction between 2D-TMDs and 2D-GO. Interlayer electronic coupling in 2D Schottky Junction (2D G-T junction) activates inert sites on the 2D surface of 2D-TMDs or GO. The power conversion efficiency of dye-sensitized solar cells (DSCs) based on 2D-WS2/2D-GO is 9.54% under standard solar illumination intensity (AM1.5, 100 mW cm?2). The value is one of the highest reported efficiencies for DSCs based on Pt-free counter electrodes. Finally, 2D-WS2/2D-GO composites exhibit excellent stability as counter electrode of DSCs.

    关键词: photoresponse,interlayer electronic coupling,2D,electrocatalyst,graphene,transition-metal dichalcogenides,Schottky junction

    更新于2025-09-23 15:23:52

  • Exploring the optical beam shifts in monolayers of transition metal dichalcogenides using Gaussian beams

    摘要: We have extensively studied Goos-H?nchen (GH) and Imbert-Fedorov (IF) shifts for reflection of a fundamental Gaussian beam using transfer matrix method. By considering a dielectric slab coated with monolayer of transition metal dichalcogenides (TMDC), we theoretically investigate the potential role of four different TMDC monolayers (WS2, WSe2, MoS2, and MoSe2) on the spatial and angular GH and IF shifts for reflection of the light beam that has not been explored previously. We find the nature of GH and IF shifts to be explicitly dependent on the mode of polarization of light beam. In case of partial reflection of light, both GH and IF shifts acquire moderate magnitude. In contrary, giant negative spatial GH shifts are examined for total internal reflection. Our analysis revealed that the typical characteristics of GH and IF shifts are significantly affected by the complex surface conductivity of TMDC monolayers and consequently the shifts are found to differ for different TMDC monolayers. We also present a comparison of the beam shifts for the monolayer TMDC-coated surfaces with the corresponding bulk TMDCs. Finally, we address the most significant question of how the GH and IF shifts depend upon the wavelengths of incident light, in particular, establishing the role of optical conductivity in beam shifts.

    关键词: Light matter interaction,Goos-H?nchen shift,Surface Optics,Gaussian beam,Transition metal dichalcogenides,Imbert-Fedorov shift

    更新于2025-09-23 15:23:52