修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Novel ?2-1,3-D-glucan porous microcapsule enveloped folate-functionalized liposomes as a Trojan horse for facilitated oral tumor-targeted co-delivery of chemotherapeutic drugs and quantum dot

    摘要: In this study, a new type of β-1,3-D-glucan porous microcapsule (GPM)-enveloped and folate conjugated chitosan-functional liposome (FCL), FCL@GPM, was developed for the potential oral co-delivery of chemotherapeutic drugs and quantum dots (QDs) with facilitated drug absorption and antitumor efficacy. In this dual-particulate system, multiple FCLs serve as the cores for effective loading, folate-mediated tumor-targeting, facilitated intracellular accumulation, and pH-responsive controlled release of chemotherapeutic agents, while a GPM acts as the shell for affording macrophage-mediated tumor selectivity. Gefitinib (GEF) was selected as a chemotherapeutic agent, while acid degradable ZnO QDs were selected due to its dual role both as an anticancer agent for synergistic chemotherapy and as a fluorescent probe for potential cancer cellular imaging. The GEF and ZnO QDs co-loaded FCL@GPMs (GEF/ZnO-FCL@GPMs) have a prolonged release manner with limited release before uptake by intestinal cells. Furthermore, the Peyer’s patches uptake, macrophages uptake, cytotoxicity, and biodistribution of FCL@GPMs were tested. In addition, GEF and ZnO QDs co-loaded FCLs (GEF/ZnO-FCLs) not only have a tumor acidity responsive release property, but also induce a superior cytotoxicity on cancer cells as compared to GEF. Moreover, a 1.75-fold increase in the bioavailability of GEF delivered from GEF/ZnO-FCL@GPMs as compared to its trademarked drug (Iressa?). As a result, GEF/ZnO-FCL@GPMs exerted a superior antitumor efficacy (1.47-fold) as compared to its trademarked drug in mice. Considered together, the developed FCL@GPMs, combining the unique physicochemical and biological benefits of FCLs and GPMs, possess a great potential as an efficient delivery system for the co-delivery of chemotherapeutic agents and quantum dots.

    关键词: chemotherapeutic drugs,pH-responsive controlled release,tumor-targeting,oral co-delivery,macrophage-mediated tumor selectivity,β-1,3-D-glucan porous microcapsule,folate conjugated chitosan-functional liposome,quantum dots

    更新于2025-09-23 15:19:57

  • Hybrid quantum dot-based theranostic nanomedicines for tumor-targeted drug delivery and cancer imaging

    摘要: Quantum dots (QDs) are considered one of the most efficient tools used in theranostic applications for diagnosis and therapy due to their unique physiochemical characteristics. QDs are semiconductor crystals in the nano-scale range of 2–10 nm which exhibit unique photoluminescence characteristics as well as electronic properties such as tunable emission from visible to near infrared wavelengths and superior light stability. QDs possess strong photoluminescence with high molar extinction coefficient values, which make them the best candidates for cell labeling and detection of cancer biomarkers. QDs are characterized by symmetric narrow-emission spectra and broad-absorption spectra. However, some fears have been raised regarding the toxicity of QDs, especially Cd-containing QDs, due to the release of Cd ions and the generation of reactive oxygen species. Therefore, strategies have been developed to reduce their toxicity and enhance their biocompatibility through hybridization with other moieties such as polymers, proteins, polysaccharides or lipids, offering efficient tumor targeting in addition to inhibiting their release into the systemic circulation. This article discusses QD-based nanohybrids for delivery of anticancer drugs in combination with cancer imaging.

    关键词: lipids,proteins,nanohybrids,tumor targeting,inorganic nanoparticles,polymers,cancer theranostics,quantum dots,polysaccharides,drug delivery

    更新于2025-09-19 17:15:36

  • Targeted near infrared hyperthermia combined with immune stimulation for optimized therapeutic efficacy in thyroid cancer treatment

    摘要: Treatment of thyroid cancer has incurred much focus because of its high prevalency. As a new strategy treating thyroid cancer, hyperthermia takes several advantages compared with surgery or chemotherapy, including minimal invasion, low systematic toxicity and the ability to enhance the immunogenicity of cancer cells with the expression Hsp70 which serves as Toll-like receptors-4 (TLR-4 agonist). However, Hsp70 as a molecular chaperone can protect cells from heat induced apoptosis and therefore compromise the tumor killing effect of hyperthermia. In this study, to solve this problem, a combined hyperthermia therapy was employed to treat thyroid cancer. We prepared a probe with the tumor targeting agent AG to monitor thyroid tumor issue and generate heat to kill tumor cells in vivo. At the same time Quercetin (inhibitor of HSP70) and lipopolysaccharide (LPS) (agonist of TLR-4) were used for the combined hyperthermia therapy. The results showed that compared with free IR820, AG modification facilitated much enhanced cellular uptake and greatly pronounced tumor targeting ability. The combined therapy exhibited the most remarkable tumor inhibition compared with the single treatments both in vitro and in vivo. These findings verified that the new therapeutic combination could significantly improve the effect of hyperthermia and shed light on a novel clinical strategy in thyroid cancer treatment.

    关键词: IR820,amino-glucose,near infrared hyperthermia,tumor targeting,heat shock protein 70

    更新于2025-09-09 09:28:46