修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Chemical Composition and Phase Evolution in DMAI-Derived Inorganic Perovskite Solar Cells

DOI:10.1021/acsenergylett.9b02272 期刊:ACS Energy Letters 出版年份:2019 更新时间:2025-09-12 10:27:22
摘要: Cesium based inorganic perovskite CsPbI3 solar cells have attracted arising research interests due to its improved thermal stability and reduced ion immigration in comparison with their organic-inorganic counterparts. However, the preferred black perovskite CsPbI3 is thermodynamically unstable at room temperature, and it will spontaneously transform to the undesired non-photoactive yellow phase. The essence of the phase instability is the small size of Cs cation, which is not suitable to support the three-dimensional PbI3- framework. The large lattice strain induced from the ion size mismatch will drive the CsPbI3 lattice structure from three dimensional (3D) perovskite phases to one dimensional (1D) non-perovskite phase. Therefore, the improvement of the lattice symmetry and reduction of the lattice strain are the two directions to dissolve the problem of phase instability. The nanocrystal-induced phase stabilization is one strategy to reduce the lattice strain by increasing the surface area of the crystals in the film, which is normally realized by introducing organic long-chain alkyl amine in the precursor solution. The shortcoming of this method is its negative effect of a large number of grain boundaries on the carrier transport and injection. Currently, the most widely used and effective strategies are the DMAI related methods, including the DMAI additive methods and the HI derived methods. The HI derived methods, normally named HI additive, HI?PbI2 or HPbI3 precursor, are demonstrated inevitably bring the DMA byproduct in the precursor solution from the reaction between HI and DMF. Although there are already several works focused on the elaboration of the final perovskite layer with the pure inorganic phase or still the organic-inorganic composite, the conclusion is still a huge controversy. Therefore, whether the organic DMA cation exists, how much the organic DMA cation in the crystal lattice, the properties of the DMA/Cs mixed perovskite phase and the mechanism of the DMAI-assisted formation of the Cs base perovskite thin film are still unclear. In this work, we tracked the chemical composition, phase and bandgap of the perovskite layer during the thermal treatment. It was found that, with a controlled thermal annealing process, a more thermodynamically stable perovskite of mixed cation DMA0.15Cs0.85PbI3 could form with a certain amount of Cs4PbI6 residue. Unlike other mixed cation perovskite materials, the composition of DMA/Cs mixed perovskite is well fixed instead of a continuous component distribution. Further thermal annealing transformed the film into C(cid:26)(cid:4)(cid:14)(cid:18)/(cid:25)3 and then into D(cid:26)(cid:4)(cid:14)(cid:18)/(cid:25)3. The DMA0.15Cs0.85PbI3 phase exhibits a more symmetrical structure, a narrower bandgap, and superior phase stability than that of C(cid:26)(cid:4)(cid:14)(cid:18)/(cid:25)3. These findings will benefit the in-depth understanding of the properties of inorganic perovskite and their phase stability issue.
作者: Hongguang Meng,Zhipeng Shao,Li Wang,Zhipeng Li,Ranran Liu,Yingping Fan,Guanglei Cui,Shuping Pang
AI智能分析
纠错
研究概述 实验方案

Investigating the chemical composition and phase evolution in DMAI-derived inorganic perovskite solar cells to understand the mechanism of DMAI-assisted formation of Cs-based perovskite thin films and their phase stability.

The study reveals that a controlled thermal annealing process can form a thermodynamically stable mixed cation perovskite DMA0.15Cs0.85PbI3 with Cs4PbI6 residue, exhibiting superior phase stability and a narrower bandgap compared to pure inorganic CsPbI3. This finding enhances the understanding of inorganic perovskite properties and their phase stability, contributing to the development of more stable and efficient perovskite solar cells.

The study focuses on the phase stability and composition of DMAI-derived inorganic perovskite solar cells but does not extensively explore the impact of grain boundaries on carrier transport and injection, which could be a limitation for device performance optimization.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Chemical Composition and Phase Evolution in DMAI-Derived Inorganic Perovskite Solar Cells”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期