- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Interface Engineering of CsPbBr <sub/>3</sub> Nanocrystal Light-Emitting Diodes via Atomic Layer Deposition
摘要: Perovskite nanocrystal (PNC) suffers from solution corrosion and water/oxygen oxidation when used in light-emitting diodes (LEDs). Atomic layer deposition (ALD) is applied to introduce Al2O3 infilling and interface engineering for the CsPbBr3 nanocrystal emission layers, and the inorganic electron transport layer-based CsPbBr3–ZnMgO LED device is fabricated. The introduction of Al2O3 ALD layers significantly improves the tolerance of CsPbBr3 PNC thin films to polar solvents ethanol of ZnMgO during spin coating. The operation lifetime of ALD-treated CsPbBr3 PNC–ZnMgO LED is prolonged to about two orders of magnitude greater than that of the CsPbBr3 PNC-TPBi LED device with a largely improved external quantum efficiency (EQE) value. Moreover, the infilling of Al2O3 into the CsPbBr3 layer boosts the carrier mobility for more than 40 times inside the light-emission layer. However, the interfacial carrier transport between different functional layers is hindered by the insulated Al2O3 layer, which provides an effective barrier for excess electron transport. Such a favorable band alignment facilitates the carrier balance of the device and contributes to the improved electroluminescent performance of the device with ALD Al2O3 interface engineering, which is further supported by theoretical device modeling. Herein, a facile method is provided to fabricate PNC-LED devices with both high efficiency and long-term lifetime.
关键词: light emitting diodes,working stability,interface engineering,atomic layer deposition,CsPbBr3 perovskite nanocrystals
更新于2025-09-23 15:21:01
-
Surface Engineering of Alla??Inorganic Perovskite Quantum Dots with Quasi Corea??Shell Technique for Higha??Performance Photodetectors
摘要: All-inorganic lead halide perovskites with good surface morphology show substantial prospect for optoelectronic devices. However, the anion exchange of coordinated alkylamine ligands (e.g., oleic acid and oleylamine) can detach ligands and induce more interface trap sites, subsequently to reduce device performance. In this paper, therefore, a simple solution-processed route is presented to synthesize quasi coreshell CsPbBr3formamidinium iodide (FAI = CH(NH2)2I) colloidal quantum dots (CQDs), and then it is applied as the active layer for photodetectors by finely controlling the ligands exchange. The presence of FAI = CH(NH2)2I on CsPbBr3 is confirmed by Fourier transform infrared spectroscopy. As a result, the photodetector ITO/ZnO (100 nm)/CsPbBr3 (150 nm)/Au show an enhanced specific detectivity over 1013 Jones with a responsivity of 19 A W1 under 3 mW cm2 405 nm illumination at 1.5 V. The experimental data show that the enhanced device performance is due to the improved crystallinity and less surface defects of CsPbBr3 CQDs, as the result of less alkylamine ligands is detached during its FAI passivation, thus the charge carriers’ mobility of the film is improved. Therefore, it provides a promising way for high-performance solution-processed all-inorganic CsPbBr3 based optoelectronic devices.
关键词: CsPbBr3 perovskite nanocrystals,solution-processed,surface passivation,recombination process
更新于2025-09-23 15:19:57
-
High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication
摘要: Optical wireless communication (OWC) using the ultra-broad spectrum of the visible-to-ultraviolet (UV) wavelength region remains a vital field of research for mitigating the saturated bandwidth of radio-frequency (RF) communication. However, the lack of an efficient UV photodetection methodology hinders the development of UV-based communication. The key technological impediment is related to the low UV-photon absorption in existing silicon photodetectors, which offer low-cost and mature platforms. To address this technology gap, we report a hybrid Si-based photodetection scheme by incorporating CsPbBr3 perovskite nanocrystals (NCs) with a high photoluminescence quantum yield (PLQY) and a fast photoluminescence (PL) decay time as a UV-to-visible colour-converting layer for high-speed solar-blind UV communication. The facile formation of drop-cast CsPbBr3 perovskite NCs leads to a high PLQY of up to ~73% and strong absorption in the UV region. With the addition of the NC layer, a nearly threefold improvement in the responsivity and an increase of ~25% in the external quantum efficiency (EQE) of the solar-blind region compared to a commercial silicon-based photodetector were observed. Moreover, time-resolved photoluminescence measurements demonstrated a decay time of 4.5 ns under a 372-nm UV excitation source, thus elucidating the potential of this layer as a fast colour-converting layer. A high data rate of up to 34 Mbps in solar-blind communication was achieved using the hybrid CsPbBr3–silicon photodetection scheme in conjunction with a 278-nm UVC light-emitting diode (LED). These findings demonstrate the feasibility of an integrated high-speed photoreceiver design of a composition-tuneable perovskite-based phosphor and a low-cost silicon-based photodetector for UV communication.
关键词: CsPbBr3 perovskite nanocrystals,Silicon-based photodetector,UV photodetection,Solar-blind UV communication,Optical wireless communication
更新于2025-09-19 17:13:59
-
All-solution-processed UV-IR broadband trilayer photodetectors with CsPbBr3 colloidal nanocrystals as carriers-extracting layer
摘要: Colloidal quantum dots (CQDs) are very promising nanomaterials for optoelectronics due to their tunable bandgap and quantum confinement effect. Especially, all-inorganic CsPbX3 (X=Br, Cl and I) perovskite nanocrystals (NCs) have attracted enormous interests owing to their promising and exciting applications in photovoltaic devices. In this paper, all-solution-processed broadband photodetectors ITO/ZnO/CsPbBr3/PbS/Au with high-performance were presented. The role of CsPbBr3 QDs layer as the carriers-extracting layer in the trilayer devices was discussed. As compared with bilayer device ITO/ZnO/PbS/Au, both the dark currents and photocurrents under illumination from UV-IR broadband trilayer photodetector ITO/ZnO(80nm)/PbS(150nm)/CsPbBr3(50nm)/Au are enhanced, but the trilayer photodetector ITO/ZnO(80nm)/CsPbBr3(50nm)/PbS(150nm)/Au showed a maximum specific detectivity (D*) of 1.73×1012 Jones with a responsivity (R) of 5.31 A/W under 6.8 mW/cm2 405 nm illumination. However, another trilayer photodetector ITO/ZnO(80nm)/PbS(150nm)/CsPbBr3(50nm)/Au showed a maximum D* of 8.3×1012 Jones with a R of 35 A/W under 1.6 mW/cm2 980 nm illumination. Further, the underlying mechanism for the enhanced performance of trilayer photodetectors was discussed. Thus, this strategy of all-solution-processed heterojunction configuration paves a facile way for broadband photodetectors with high-performance.
关键词: broadband photodetectors,all-solution-processed heterojunction,Colloidal quantum dots (CQDs),CsPbBr3 perovskite nanocrystals,carrier-extraction layer
更新于2025-09-12 10:27:22