- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Pixel-to-pixel variation on a calibrated PILATUS3-based multi-energy soft x-ray detector
摘要: A multi-energy soft x-ray pin-hole camera based on the PILATUS3 100 K x-ray detector has recently been installed on the Madison Symmetric Torus. This photon-counting detector consists of a two-dimensional array of ~100 000 pixels for which the photon lower-threshold cutoff energy Ec can be independently set for each pixel. This capability allows the measurement of plasma x-ray emissivity in multiple energy ranges with a unique combination of spatial and spectral resolution and the inference of a variety of important plasma properties (e.g., T e, nZ, Z eff). The energy dependence of each pixel is calibrated for the 1.6–6 keV range by scanning individual trimbit settings, while the detector is exposed to ?uorescence emission from Ag, In, Mo, Ti, V, and Zr targets. The resulting data for each line are then ?t to a characteristic "S-curve" which determines the mapping between the 64 possible trimbit settings for each pixel. The statistical variation of this calibration from pixel-to-pixel was explored, and it was found that the discreteness of trimbit settings results in an effective threshold resolution of ?E < 100 eV. A separate calibration was performed for the 4–14 keV range, with a resolution of ?E < 200 eV.
关键词: energy calibration,x-ray detector,photon-counting,multi-energy soft x-ray,plasma x-ray emissivity,PILATUS3
更新于2025-09-23 15:21:21
-
Spatial heterodyne spectroscopy for high speed measurements of Stark split neutral beam emission in a high temperature plasma
摘要: Measurement of electrostatic potential, or local electric field, turbulence is a critical missing component in validating nonlinear turbulence and transport simulations of fusion plasmas. A novel diagnostic is being developed for measuring local electric field fluctuations, ?E(r, t), via high-speed measurements of the light emitted from a hydrogenic neutral beam. It exploits the proportionality of the spectral line splitting from the Motional Stark Effect to the total electric field experienced by the neutral atom at the excitation site. The measurement is localized by the usual cross-beam geometry of beam-spectroscopy measurements. The corner stone of the diagnostic is a high spectral resolution, high etendue spatial heterodyne spectrometer (SHS). A SHS design with high etendue (~5 mm2 sr) and resolution (~0.14 nm) meets the formidable spectrometer requirements. Field tests of the spectrometer at the DIII-D tokamak demonstrate that the beam emission spectrum produced by the SHS agrees with that of a traditional spectrometer and that the measured flux is adequate for turbulence studies.
关键词: Stark split neutral beam emission,electric field fluctuations,spatial heterodyne spectroscopy,turbulence diagnostics,high temperature plasma
更新于2025-09-23 15:21:21
-
Plasma effects on lasing of a uniform ultralight axion condensate
摘要: Lasing of an ultralight axion condensate into photons can be sensitive to the presence of a background plasma owing to its coupling to electromagnetism. Such a scenario is particularly relevant for a superradiant axion condensate around stellar mass black holes since the axion mass can be within a few orders of magnitude of the plasma frequency of the surrounding medium. In this paper, I discuss the properties of the plasma around a black hole and analyze its effects on the lasing of a uniform axion condensate of mass of the order of the plasma frequency.
关键词: superradiance,lasing,black holes,axion condensate,plasma effects
更新于2025-09-23 15:21:21
-
RESEARCH ON MINIMUM ENERGY EXCITED TO PLASMA COATING FOR REDUCING RADAR CROSS SECTION OF TARGET
摘要: To reduce the radar cross section (RCS) of a target, plasma coating on perfectly electric conducting plate is studied in this paper. Nonuniform helium plasma produced by a minitype solid rocket engine is with collisional and unmagnetized. Energy excited for generating helium plasma is investigated. Based on the collisional, unmagnetized, and cold plasma model, backscattering RCS is computed by using ?nite-di?erence time-domain method. Principle of RCS reduction is explained. To ?nd minimum input energy while RCS reduced, relationship between input power and RCS reduction is discussed, and numerical optimization is also implemented. We can identify optimal parameters and choose the best electron density pro?le under condition of given input power level.
关键词: Radar Cross Section (RCS),Plasma Coating,Input Power,Electron Density,Finite-Difference Time-Domain (FDTD) Method
更新于2025-09-23 15:21:21
-
Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS
摘要: The design of efficient substrates for surface-enhanced Raman spectroscopy (SERS) for large-scale fabrication at low cost is an important issue in further enhancing the use of SERS for routine chemical analysis. Here, we systematically investigate the effect of different radio frequency (rf) plasmas (argon, hydrogen, nitrogen, air and oxygen plasma) as well as combinations of these plasmas on the surface morphology of thin silver films. It was found that different surface structures and different degrees of surface roughness could be obtained by a systematic variation of the plasma type and condition as well as plasma power and treatment time. The differently roughened silver surfaces act as efficient SERS substrates showing greater enhancement factors compared to as prepared, sputtered, but untreated silver films when using rhodamine B as Raman probe molecule. The obtained roughened silver films were fully characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron (XPS and Auger) and ultraviolet–visible spectroscopy (UV–vis) as well as contact angle measurements. It was found that different morphologies of the roughened Ag films could be obtained under controlled conditions. These silver films show a broad range of tunable SERS enhancement factors ranging from 1.93 × 102 to 2.35 × 105 using rhodamine B as probe molecule. The main factors that control the enhancement are the plasma gas used and the plasma conditions, i.e., pressure, power and treatment time. Altogether this work shows for the first time the effectiveness of a plasma treatment for surface roughening of silver thin films and its profound influence on the interface-controlled SERS enhancement effect. The method can be used for low-cost, large-scale production of SERS substrates.
关键词: plasma treatment,sputtering,surface-enhanced Raman spectroscopy (SERS),silver,surface roughening
更新于2025-09-23 15:21:21
-
Effect of low-energy ion impact on the structure of hexagonal boron nitride films studied in surface-wave plasma
摘要: A high‐density surface‐wave plasma source is used to deposit hexagonal boron nitride (hBN) films in a gas mixture of He, H2, N2, Ar, and BF3 under a high ion flux condition using low‐energy ion irradiation. The ion energy is controlled between around zero and 100 eV by applying a negative or positive bias voltage to a substrate, while the ion flux is increased by locating a substrate upstream in the diffusive plasma. For ion energies above ~37 eV, the structure of the films depends upon ion energy more than substrate temperature, typical of subplantation processes. As a result, the structural order and crystallinity of sp2‐bonded phase in the films characterized by Fourier transform infrared spectroscopy and X‐ray diffraction are increased with decreasing ion energy, while the mass density of the films characterized by X‐ray reflectivity is retained relatively high with a slight dependence upon ion energy.
关键词: surface‐wave plasma,Fourier transform infrared spectroscopy (FTIR),chemical vapor deposition (CVD),hexagonal boron nitride (hBN),X‐ray diffraction (XRD),X‐ray reflectivity (XRR)
更新于2025-09-23 15:21:21
-
[IEEE 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Kyoto, Japan (2018.7.9-2018.7.13)] 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Electron sources based on diamond pin-diodes
摘要: Efficient electron sources are of ongoing interest in particular for space and terrestrial power telecommunications and radar applications. With conventional cathode technology based on thermionic- and field electron emission a novel approach for direct electron emission is realized through a diamond pin diode. Electrons injected into the conduction band of the intrinsic layer of the diode can be released into vacuum with a negative electron affinity surface of the i-layer. The diamond pin diodes were prepared on boron doped (p-type) substrates with (111) surface orientation. A high purity intrinsic and a phosphorus doped diamond layer (n-type, ~400nm thickness) were deposited in dedicated PECVD systems, respectively. An additional contact layer comprised of nanostructured carbon was grown in a dedicated PECVD. The layered device was processed by lithography utilizing an aluminum hard mask to etch mesa structures with diameters ranging from 50μm to 200μm. The final devices were treated in a pure hydrogen plasma to induce the negative electron affinity properties of the i-layer. After an annealing step in high vacuum individual pin diodes were biased in forward current and voltages up to 20V. The observation of light from the diode was attributed to the UV exciton state and indicated bipolar transport. At a diode current of about 80mA an electron emission current of 25μA was observed from a single 200μm diameter diode.
关键词: Diamond,solid state electronics,doping,phosphorus,electron emission,plasma-enhanced chemical vapor deposition,nanostructured carbon,pin diode,single crystal
更新于2025-09-23 15:21:21
-
[IEEE 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Kyoto, Japan (2018.7.9-2018.7.13)] 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Suppression of electron emission from cathode in photoemission-assisted Ar plasma
摘要: In order to improve the efficiency of the surface flattening process using photoemission-assisted plasma ion source, current-bias voltage characteristic and Ar+ ions/Ar atoms ratio in the plasma was investigated. The glow discharge starting voltage decreases by UV irradiation and a great number of Ar+ ions were irradiated to the substrate. On the other hand in PA Townsend discharge, the number of Ar+ ions reached at the substrate is smaller than that in glow discharge due to space charges near the cathode substrate.
关键词: space charge effect,Langmuir probe,photoemission-assisted plasma
更新于2025-09-23 15:21:21
-
High-throughput laser generation of Si-nanoparticle based surface coatings for antibacterial applications
摘要: High-productivity regime of nanosecond IR-laser ablative generation of silicon colloidal solutions in water for anti-bacterial applications was found in terms of GW/cm2-level laser intensity and scanning velocity by measuring multi-shot ablative mass loss and extinction coefficients of the colloids as sub-linear and third-power intensity functions, respectively. This advantageous regime implies sub-linear mass loss versus laser intensity at the simultaneous third-power yield of nanoparticles, resulting from the subcritical-density, opaque ablative plasma regulating the sample ablation rate and the related plasma-mediated dissociation (dispergation) of the ablation products. In contrast, at higher intensities, there is a drastic increase in mass loss with the corresponding increased yield of (sub) micrometer-sized particles owing to intense plasma-driven expulsion of micro-scale melt droplets and the corresponding saturation of the extinction coefficient of the colloidal solutions because of their dynamic local “self-limiting” effect during the high-rate ablation. The optimal low-intensity regime for Si nanoparticle production demonstrates the monotonous correlated increase of mass loss and extinction coefficient in terms of increasing laser scanning velocity, indicating the diminished cumulative effects. Surface coatings prepared from the generated Si nanoparticles exhibit minor surface oxidation, as acquired as their elemental composition via energy-dispersive X-ray spectroscopy, making their contact angle for water droplets (≈51°) close to that of bare Si wafer (≈58°) with its nanometer-thick native oxide layer. Owing to good wetting, the nanoparticle-based surface coatings show strong antibacterial response regarding Gram-negative Pseudomonas auereginosa bacteria even despite their minor oxidative passivation.
关键词: Silicon nanoparticles,Colloids,Surface oxidation,Extinction coefficient,Wetting,Antibacterial tests,Gram-negative bacteria Pseudomonas auereginosa,Sub-critical ablative plasma,Nanosecond laser ablation,Mass loss
更新于2025-09-23 15:21:21
-
Residual porosity and optical properties of spark plasma sintered transparent polycrystalline cerium-doped YAG
摘要: Transparent cerium-doped yttrium aluminum garnet (Ce:YAG) phosphors are promising candidates for high-power white light emitting diode applications. In the present study, Ce:YAG powder was synthesized by a co-precipitation method and highly transparent ceramics were fabricated by spark plasma sintering. The effects of temperature and pressure, as well as post-sintering treatments (annealing or hot isostatic pressing), on residual porosity were studied by electron and confocal laser microscopy. Correlation between residual porosity characteristics (pore size and volume fraction) and optical properties (in-line transmittance and photoluminescence intensity) of the luminescent transparent ceramics was established.
关键词: Transparency,Spark plasma sintering,Photoluminescence,Ce:YAG ceramic,Residual porosity
更新于2025-09-23 15:21:21