- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
White light emission from a mixture of silicon quantum dots and gold nanoclusters and its utilities in sensing of mercury( <scp>ii</scp> ) ions and thiol containing amino acid
摘要: White light emitting mixture (WLEM) was produced by controlled mixing of blue emitting silicon quantum dots (Si QDs) and orange red emitting gold nanoclusters (Au NCs). The chromaticity color co-ordinate of the WLEM studied using CIE (Commission Internationale del'Eclairage) diagram was found to be (0.33, 0.32), which was very close to that of perfect white light emitting source. The WLEM can also be achieved in the form of gel, solid and film with nearly the same CIE co-ordinates which enhances its utility as white light-emitting source in solid state devices. The reversible and thermo-responsive behaviour of the WLEM broadens its application in thermal sensing. Furthermore, the system was found to be showing fast, sensitive and selective detection of Hg2+ ions and thiol containing amino acid cysteine.
关键词: Hg2+ ions,white light emitting mixture,silicon quantum dots,cysteine,gold nanoclusters
更新于2025-11-20 15:33:11
-
Efficient White LEDs Using Liquid-state Magic-sized CdSe Quantum Dots
摘要: Magic clusters have attracted significant interest to explore the dynamics of quantum dot (QD) nucleation and growth. At the same time, CdSe magic-sized QDs reveal broadband emission in the visible wavelength region, which advantageously offer simple integration of a single-type of nanomaterial and high color rendering ability for white light-emitting diodes (LEDs). Here, we optimized the quantum yield of magic-sized CdSe QDs up to 22% via controlling the synthesis parameters without any shelling or post-treatment process and integrated them in liquid-state on blue LED to prevent the efficiency drop due to host-material effect. The fabricated white LEDs showed color-rendering index and luminous efficiency up to 89 and 11.7 lm/W, respectively.
关键词: Magic clusters,Quantum dots,Luminous efficiency,CdSe,White light-emitting diodes
更新于2025-11-20 15:33:11
-
Synthesis of carbon quantum dots from lac dye for silicon dioxide imaging and highly sensitive ethanol detecting
摘要: This study aimed to improve the fluorescence performance of lac dye by preparing carbon quantum dots in an attempt to diversify the applicability of lac dye in fluorescence detection. The highly photoluminescent (PL) ld-CQDs were synthesized for the first time using lac dye as a precursor by a facile, green, one-pot ethanol thermal method. The ld-CQDs were neither soluble nor dispersed in water, but could be dissolved or dispersed in organic solvents. The ld-CQDs were well dispersed in ethanol with a mean diameter of 1.76 nm and were found to emit a bright yellow fluorescence with an emission wavelength of 570 nm. The quantum yield of ld-CQDs was 0.40, which was a significant 20-fold improvement over the lac dye of 0.02. Meanwhile, ld-CQDs exhibited pH-sensitive and excellent affinity for silicon dioxide without further chemical modification. Further, ld-CQDs could be used to image silicon dioxide since the fluorescence intensity of the ld-CQDs/silicon dioxide composites was significantly improved. Furthermore, the ld-CQDs could be used as a highly sensitive fluorescent probe to detect the ethanol content of commercial wines. In conclusion, this study has demonstrated the novel application of the fluorescence properties of the lac dye, which has utility in visual detection applications and in tracking the detection of silicon dioxide and ethanol.
关键词: novel application,carbon quantum dots,photoluminescent,Lac dye
更新于2025-11-20 15:33:11
-
Microwave-assisted synthesis of graphene quantum dots and nitrogen-doped graphene quantum dots: Raman characterization and their optical properties
摘要: In this report we will present completely new results on the improvement of the graphene quantum dots (GQDs) and nitrogen-doped graphene quantum dots (N-GQD) production method, using the microwave with different power levels and durations, from citric acid and urea. This is a new and unprecedented method of fabrication. The use of microwave has allowed ultra-fast fabrication of GQDs and nitrogen doped GQDs. These GQDs had their characteristics identi?ed by Raman scattering spectra for the characteristic C–C graphene vibration mode (G-peak) and defects of GQDs (D-peak). The absorption spectra of GQDs samples were fabricated under different conditions, with the expectation of different sizes, to be compared and analyzed. These absorption spectra were also compared with those of the N-GQD produced under the same conditions. The absorption mechanism of GQDs and N-GQD will be presented in detail. Measurements of the photoluminescence (PL) spectra in GQDs and N-GQD have also been recorded and analyzed. The ?uorescence mechanism will be presented, explained, and compared with other international publications of other authors. Some of the TEM and HR-TEM images of these two samples were also presented to con?rm the shape, size and in-plane spacing lattice of the GQD structure.
关键词: graphene quantum dots (GQDs),PL spectra,nitrogen-doped graphene quantum dots (N-GQD),microwave,Raman spectra,absorption spectra
更新于2025-11-19 16:56:42
-
Sulfur and Nitrogen Co-Doped Graphene Quantum Dots as a Fluorescent Quenching Probe for Highly Sensitive Detection toward Mercury Ions
摘要: Sulfur and nitrogen co-doped graphene quantum dots (SN-GQDs) were synthesized through an efficient infrared (IR)-assisted pyrolysis of glucose, urea, and ammonia sulfate at 260°C. These served as a highly selective probe for the sensing of Hg2+ ions in an aqueous solution. The IR technique can also prepare N-doped graphene quantum dots (N-GQDs), which have been compared with SN-GQDs for their fluorescence (FL) quenching sensitivities by Hg2+ ions. The FL intensities of both GQDs show decreasing functions of concentration of Hg2+ ions within the entire concentration ranges of 10 ppb?10 ppm. The sensitivity of SN-GQD is 4.23 times higher than that of N-GQD, based on the calculation of the Stern-Volmer equation. One inter-band gap structure of SN-GQDs for the detection of mercury ions is proposed. The S doping can coordinate with phenolic groups on the edge of SN-GQDs (i.e., the formation of (CxO)2Hg2+) and induce the cutting off or alleviation of photon injection paths, thereby leading to significant FL quenching. This work proves that SN-GQD offers sufficient sensitivity for probing the quality of drinking water to ensure that it contains less than 10 ppb of Hg2+ ions, as per the World Health Organization standard.
关键词: Fluorescence quenching,Nitrogen doping,Infrared-assisted heating,Graphene quantum dots,Sulfur doping,Mercury detection
更新于2025-11-19 16:56:42
-
Two-dimensional beta-lead oxide quantum dots
摘要: In recent years, black-phosphorus-analogue (BPA) two-dimensional (2D) materials have been explored to demonstrate promising optoelectronic performances and distinguished ambient stabilities, holding great promise in practical applications. Here, one new kind of BPA material, orthorhombic β-PbO quantum dots (QDs), is successfully fabricated by a facile liquid phase exfoliation (LPE) technique. The as-prepared β-PbO QDs show a homogeneous distribution of the lateral size (3.2 ± 0.9 nm) and thickness (2.5 ± 0.5 nm), corresponding to 4 ± 1 layers. The carrier dynamics of β-PbO QDs was systematically investigated via a femtosecond resolution transient absorption approach in the visible wavelength regime and it was clarified that two decay components were resolved with a decay time of τ1 = 2.3 ± 0.3 ps and τ2 = 87.9 ± 6.0 ps, respectively, providing important insights into their potential applications in the field of ultrafast optics, nanomechanics and optoelectronics. As a proof-of-concept, β-PbO QDs were, for the first time to our knowledge, fabricated as a working electrode in a photoelectrochemical (PEC)-typed photodetector that exhibits significantly high photocurrent density and excellent stability under ambient conditions.
关键词: photoelectrochemical photodetector,β-PbO quantum dots,carrier dynamics,liquid phase exfoliation
更新于2025-11-19 16:56:42
-
Light-Stimulated Synaptic Transistors Fabricated by a Facile Solution Process Based on Inorganic Perovskite Quantum Dots and Organic Semiconductors
摘要: Implementation of artificial intelligent systems with light-stimulated synaptic emulators may enhance computational speed by providing devices with high bandwidth, low power computation requirements, and low crosstalk. One of the key challenges is to develop light-stimulated devices that can response to light signals in a neuron-/synapse-like fashion. A simple and effective solution process to fabricate light-stimulated synaptic transistors (LSSTs) based on inorganic halide perovskite quantum dots (IHP QDs) and organic semiconductors (OSCs) is reported. Blending IHP QDs and OSCs not only improves the charge separation efficiency of the photoexcited charges, but also induces delayed decay of the photocurrent in the IHP QDs/OSCs hybrid film. The enhanced charge separation efficiency results in high photoresponsivity, while the induced delayed decay of the photocurrent is critical to achieving light-stimulating devices with a memory effect, which are important for achieving high synaptic performance. The LSSTs can respond to light signals in a highly neuron-/synapse-like fashion. Both short-term and long-term synaptic behaviors have been realized, which may lay the foundation for the future implementation of artificial intelligent systems that are enabled by light signals. More significantly, LSSTs are fabricated by a facile solution process which can be easily applied to large-scale samples.
关键词: light-stimulated synaptic transistors,solution process,organic semiconductors,blended materials,inorganic halide perovskite quantum dots
更新于2025-11-19 16:56:42
-
Photoluminescence enhancement <i>via</i> microwave irradiation of carbon quantum dots derived from solvothermal synthesis of <scp>l</scp> -arginine
摘要: Photoluminescence enhancement of carbon quantum dots was achieved via solvothermal synthesis followed by microwave irradiation. Nitrogen and phosphorous doped carbon quantum dots were prepared by solvothermal heating of L-arginine with phosphoric acid for 12 hours followed by microwave irradiation for 3 minutes. The photoluminescence enhancement was nearly two fold after microwave irradiation. The morphology, structure, and surface properties were the same for the solvothermal (CQDs-S) as well as after microwave (CQDs-M) irradiation. Thus, the enhancement is attributed to the decrease of surface defects within CQDs, which led to a decrease in the non-radiative transitions. The CQDs were quenched selectively by Fe3+ ions. The quenching led to the fabrication of the fluorescence probe for ferric ion determination. The CQDs-M had a low detection limit of 4.0 nM, while CQDs-S had a limit of 50 nM. This study gives a tool for enhancing photoluminescence quantum yields, which is highly desired for biosensing and bioimaging applications.
关键词: Photoluminescence enhancement,Fluorescence probe,Solvothermal synthesis,Ferric ion determination,Microwave irradiation,Carbon quantum dots
更新于2025-11-19 16:56:42
-
Nitrogen-doped graphene quantum dots: Optical properties modification and photovoltaic applications
摘要: In this work, we utilize a bottom-up approach to synthesize nitrogen self-doped graphene quantum dots (NGQDs) from a single glucosamine precursor via an eco-friendly microwave-assisted hydrothermal method. Structural and optical properties of as-produced NGQDs are further modified using controlled ozone treatment. Ozone-treated NGQDs (Oz-NGQDs) are reduced in size to 5.5 nm with clear changes in the lattice structure and ID/IG Raman ratios due to the introduction/alteration of oxygen-containing functional groups detected by Fourier-transform infrared (FTIR) spectrometer and further verified by energy dispersive X-ray spectroscopy (EDX) showing increased atomic/weight percentage of oxygen atoms. Along with structural modifications, GQDs experience decrease in ultraviolet–visible (UV–vis) absorption coupled with progressive enhancement of visible (up to 16 min treatment) and near-infrared (NIR) (up to 45 min treatment) fluorescence. This allows fine-tuning optical properties of NGQDs for solar cell applications yielding controlled emission increase, while controlled emission quenching was achieved by either blue laser or thermal treatment. Optimized Oz-NGQDs were further used to form a photoactive layer of solar cells with a maximum efficiency of 2.64% providing a 6-fold enhancement over untreated NGQD devices and a 3-fold increase in fill factor/current density. This study suggests simple routes to alter and optimize optical properties of scalably produced NGQDs to boost the photovoltaic performance of solar cells.
关键词: photovoltaics,optical properties,ozone treatment,nitrogen-doped graphene quantum dots,solar cells
更新于2025-11-19 16:56:42
-
Valorization of tire wastes to carbon quantum dots (P-CDs) and photocatalytic degradation enhancement of organic wastes using ZnO-CDs nanocomposites
摘要: Valorization of solid wastes for the production of valuable materials is of great importance for sustainable development. In this paper, removal for solid and liquid wastes via hydrothermal and catalytic degradation was reported. The first removal process is the hydrothermal conversion of solid waste, here solid wastes of tire, to phosphorous and nitrogen doped carbon nanodots (P-CDs). The second removal is the visible-NIR light driven photocatalytic degradation of liquid waste, here methylene blue (MB) solution, using P-CDs loaded on ZnO nanoparticles. Energy-efficient light emitting diode (LED) was used as a weak sufficient irradiation source. Photodegradation rate constants for ZnO-P-CDs were almost 10 times higher (0.08 h?1 for ZnO-P-CDs) comparing to pure ZnO (0.008 h?1), such enhancement is significant for a weak light source. Cyclic voltammetry and optical properties were used to find HOMO and LUMO of P-CDs. Based on the energy levels of ZnO and P-CDs, the catalytic enhancement was attributed to increasing the separation rate of photogenerated electrons and hole due to the transfer of electrons from the conduction bands of P-CDs to the conduction band of ZnO. Up-conversion photoluminescence of P-CDs is another reason for increasing the separation of excitons and harvesting the longer wavelength light. The proposed approach, solid and liquid waste removal via hydrothermal and catalytic degradation combined with weak LED light, would be a powerful approach in solid waste treatment and water purification technology, simultaneously.
关键词: Valorization,Tire wastes,Carbon quantum dots,Photocatalytic degradation,ZnO-P-CDs nanocomposites
更新于2025-11-19 16:56:42