- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Nitrogen-Doped Titanium Dioxide Thin Films Formation on the Surface of PLLA Electrospun Microfibers Scaffold by Reactive Magnetron Sputtering Method
摘要: Nitrogen-doped thin titanium dioxide films formed by the reactive magnetron sputtering method on the surface of PLLA electrospun microfibers scaffold were investigated. It was shown that the chemical composition of the films is shifting from titanium dioxide (TiO2) composites saturated with C–NH, C=N, N–C=N and HN–C=O compounds to solid solutions of titanium oxides (TixOy) and titanium oxynitrides (TiOxNy) with the increased time of the treatment. An empirical model describing changes in the chemical composition of the surface due to the treatment was proposed. It was shown that the modification of the PLLA microfibers scaffolds surface improves cell-scaffold and cell–cell interactions with the highest number of viable adherent cells observed on the scaffold treated for 4 min.
关键词: Scaffolds,Reactive magnetron sputtering,Thin films,Biocompatibility
更新于2025-11-21 11:24:58
-
AIP Conference Proceedings [Author(s) PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AUTOMOTIVE INNOVATION GREEN ENERGY VEHICLE: AIGEV 2018 - Kuantan, Malaysia (25–26 July 2018)] - Chemical bath deposition of In2S3 thin films as promising material and buffer layer for solar cells
摘要: The copper(I) and indium thin films are obtained by chemical bath deposition (CBD). Their elemental composition and microstructure were particularly studied by means of the x-ray photoelectron spectroscopy (XPS). The change in the surface microstructure of thin films depending on the temperature and the composition of reaction bath were determined by means of scanning electron microscopy (SEM).
关键词: chemical bath deposition,solar cells,thin films,buffer layer,In2S3
更新于2025-11-21 11:20:48
-
Structural and optical studies on PVA capped SnS films grown by chemical bath deposition for solar cell application
摘要: Tin monosulphide (SnS) thin films capped by PVA have been successfully deposited on glass substrates for cost effective photovoltaic device applications by a simple and low-cost wet chemical process, chemical bath deposition (CBD) at different bath temperatures varying in the range, 50–80 °C. X–ray diffraction analysis showed that the deposited films were polycrystalline in nature, showing orthorhombic structure with an intense peak corresponding to (040) plane of SnS. These observations were further confirmed by Raman analysis. FTIR spectra showed the absorption bands which corresponds to PVA in addition to SnS. The scanning electron microscopy and atomic force microscopy studies revealed that the deposited SnS films were uniform and nanostructured with an average particle size of 4.9 to 7.6 nm. The optical investigations showed that the layers were highly absorbing with the optical absorption coefficient ~105 cm–1. A decrease in optical band gap from 1.92 to 1.55 eV with an increase of bath temperature was observed. The observed band gap values were higher than the bulk value of 1.3 eV, which might be due to quantum confinement effect. The optical band gap values were also used to calculate particle size and the results are discussed.
关键词: structural properties,optical properties,SnS thin films,polyvinyl alcohol,capping agent,chemical bath deposition
更新于2025-11-21 11:18:25
-
Unraveling the electrical properties of solution-processed copper iodide thin films for CuI/n-Si solar cells
摘要: The effects of temperature and liquid-phase iodination on the electrical property of spin coated CuI thin films have been investigated in details. The XRD study indicates that CuI thin films are polycrystalline in nature and I-doping enhances the crystal quality and size of the films. The SEM images show that the surface uniformity of the CuI thin films increases due to I-doping. The doping of iodine increases the conductivity as well as carrier concentration and mobility of the films as confirmed by Hall study. The temperature dependent resistivity of CuI film shows a sharp fall of resistivity at ~80 °C for un-doped films whereas this behavior disappears for I-doped films. The optical transmittance and band gap of the I-doped films also increases indicating high degeneracy of the films. These findings imply that I-doped spin coated CuI thin films are potential candidate for the solution-processed CuI/n-Si solar cells.
关键词: liquid-phase I-doped,spin coat,CuI thin films,switching-behavior,electrical properties
更新于2025-11-21 11:18:25
-
Effects of Sn doping on the optoelectronic properties of reactively evaporated In4Se3 thin films
摘要: Polycrystalline In4Se3: Sn thin films are prepared on glass substrate by reactive evaporation under a vacuum of 10?5 mbar. The characterizations of the samples are done using XRD, FESEM, XPS and UV-Vis-NIR spectrophotometer. The optical band gap shift of the sample, above the carrier concentration of 1.833 × 1017 cm?3, is well described by Burstein-Moss model. The resistivity of the samples is found to decrease as a result of Sn incorporation. Our results show that in all samples, impurity scattering and lattice vibration scattering are the main factors affecting the electrical properties. Photoconductivity studies at room temperature show that visible photoresponsivity of the films increases with increase in Sn concentration. These improvements in optoelectronic properties facilitate the usefulness of such films in device applications.
关键词: Sn doped In4Se3 thin films,Reactive evaporation,Burstein-moss effect
更新于2025-11-21 11:01:37
-
Effect of Deposition Potential on Synthesis, Structural, Morphological and Photoconductivity Response of Cu2O Thin Films by Electrodeposition Technique
摘要: The present work describes the effect of deposition potentials on structural, morphological, optical, electrical and photoconductivity responses of cuprous oxide (Cu2O) thin films deposited on fluorine-doped tin oxide glass substrate by employing electrodeposition technique. X-ray diffraction patterns reveal that the deposited films have a cubic structure grown along the preferential (111) growth orientation and crystallinity of the film deposited at ? 0.4 V is improved compared to the films deposited at ? 0.2, ? 0.3 and ? 0.5 V. Scanning electron microscopy displays that surface morphology of Cu2O film has a well-defined three-sided pyramid-shaped grains which are uniformly distributed over the surface of the substrates and are significantly changed as a function of deposition potential. Raman and photoluminescence spectra manifest that the film deposited at ? 0.4 V has a good crystal quality with higher acceptor concentration compared to other films. UV–visible analysis illustrates that the absorption of Cu2O thin film deposited at ? 0.4 V is notably higher compared to other films and the band gap of Cu2O thin films decreases from 2.1 to 2.04 eV with an increase in deposition potential from ? 0.2 to ? 0.5 V. The frequency–temperature dependence of impedance analysis shows that the film deposited at ? 0.4 V has a high conductivity. I–V measurements elucidate that the film deposited at ? 0.4 V exhibits a good photoconductivity response compared to films deposited in other deposition potentials.
关键词: Cu2O thin films,Electrodeposition,I–V measurement,Photoconductivity response
更新于2025-11-19 16:46:39
-
Origin of Ferroelectricity in Epitaxial Si-doped HfO2 Films
摘要: HfO2-based unconventional ferroelectric (FE) materials were recently discovered and have attracted a great deal of attention in both academia and industry. The growth of epitaxial Si-doped HfO2 films has opened up a route to understand the mechanism of ferroelectricity. Here, we used pulsed laser deposition (PLD) to grow epitaxial Si-doped HfO2 films in different orientations of N-type SrTiO3 substrates. Using piezoforce microscopy, polar nanodomains can be written and read, and these domains are reversibly switched with a phase change of 180o. Films with different thicknesses displayed a coercive field Ec and a remnant polarization Pr of approximately 4~5 MV/cm and 8~32 μC/cm2, respectively. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) results identified that the as-grown Si-doped HfO2 films have strained fluorite structures. The ABAB stacking mode of the Hf atomic grid observed by HRTEM clearly demonstrates that the ferroelectricity originates from the noncentrosymmetric Pca21 polar structure. Combined with soft X-ray absorption spectra (XAS), it was found that the Pca21 ferroelectric crystal structure manifested as O sublattice distortion by the effect of interface strain and Si dopant interactions, resulting in further crystal-field splitting as a nanoscaled ferroelectric ordered state.
关键词: HRTEM,PLD,XRD,Ferroelectricity,PFM,XAS,Epitaxial Si-doped HfO2 thin films,N-type SrTiO3 substrates
更新于2025-11-14 17:04:02
-
Electrochromic Properties of Nanostructured WO <sub/>3</sub> Thin Films Deposited by Glancing‐Angle Magnetron Sputtering
摘要: Tungsten oxide thin films are prepared by glancing-angle reactive magnetron sputtering at room temperature. The surface and cross-section morphologies are characterized by FE-SEM and TEM. The electrochromic properties of the thin films are studied using a three-electrode system in 1 m LiClO4/PC solution. When the glancing angle is kept at 80°, a nanocolumnar structured film is obtained. This nanocolumnar structured film shows a lower driving potential and better stability compared to the dense film. The charge capacity per unit area of the nanocolumnar structured film is determined to be 30.85 mc cm?2. The diffusion rates of injection and detachment of ions are determined to be Din = 6.57 × 10?10 cm2 s?1 and Dde = 6.55 × 10?10 cm2 s?1 under an applied potential of ±1.2 V, respectively. The optical modulation amplitude of the nanocolumnar structured film reaches 65% at a wavelength of 600 nm and the optical density is superior to that of the dense film.
关键词: nanostructured,electrochromic,WO3 thin films,glancing angle,magnetron sputtering
更新于2025-11-14 17:03:37
-
Lossy Mode Resonance Generation by Graphene Oxide Coatings onto Cladding-Removed Multimode Optical Fiber
摘要: In this work, we have studied the suitability of graphene oxide-based thin films to be not only excellent sensitive coatings but also lossy mode resonance (LMR)-generating materials. Thin films of graphene oxide (GO) and polyethylenimine (PEI) fabricated by means of layer-by-layer assembly were selected in this study. Two optical fiber devices with 8 and 20 bilayers of the LMR-generating coating were fabricated and characterized as refractometers. Both devices show no hysteresis and high sensitivity, improving previously reported values. This research opens very promising and exciting possibilities in the field of optical fiber sensors based on LMR, strategically including specific recognition groups to the device surface to exploit this high sensitivity for monitoring a range of target analytes. The carboxylate functional groups at the edges of the GO sheets should provide excellent attachment sites for the required coupling chemistry to realize such devices.
关键词: optical fiber sensor,thin films,Dip-assisted layer by layer,lossy mode resonance,refractometer,graphene oxide
更新于2025-11-14 15:19:41
-
Single process CVD growth of hBN/Graphene heterostructures on copper thin films
摘要: In this study, we have successfully grown hBN/graphene heterostructures on copper thin films using chemical vapor deposition in a single process. The first and most surprising result is that graphene grows underneath hBN and adjacent to the Cu film even though it is deposited second. This was determined from cross-sectional TEM analysis and XPS depth profiling, which chemically identified the relative positions of hBN and graphene. The effect of various growth conditions on graphene/hBN heterostructures was also studied. It was found that a pressure of 200 torr and a hydrogen flow rate of 200 sccm (;1 H2/N2) yielded the highest quality of graphene, with full surface coverage occurring after a growth time of 120 min. The resulting graphene films were found to be approximately 6–8 layers thick. The grain size of the nanocrystalline graphene was found to be 15–50 nm varying based on growth conditions.
关键词: XPS depth profiling,copper thin films,TEM analysis,hBN/graphene heterostructures,chemical vapor deposition
更新于2025-11-14 14:32:36