- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Efficient White LEDs Using Liquid-state Magic-sized CdSe Quantum Dots
摘要: Magic clusters have attracted significant interest to explore the dynamics of quantum dot (QD) nucleation and growth. At the same time, CdSe magic-sized QDs reveal broadband emission in the visible wavelength region, which advantageously offer simple integration of a single-type of nanomaterial and high color rendering ability for white light-emitting diodes (LEDs). Here, we optimized the quantum yield of magic-sized CdSe QDs up to 22% via controlling the synthesis parameters without any shelling or post-treatment process and integrated them in liquid-state on blue LED to prevent the efficiency drop due to host-material effect. The fabricated white LEDs showed color-rendering index and luminous efficiency up to 89 and 11.7 lm/W, respectively.
关键词: Magic clusters,Quantum dots,Luminous efficiency,CdSe,White light-emitting diodes
更新于2025-11-20 15:33:11
-
Ultrathin, Core–Shell Structured SiO <sub/>2</sub> Coated Mn <sup>2+</sup> ‐Doped Perovskite Quantum Dots for Bright White Light‐Emitting Diodes
摘要: All-inorganic semiconductor perovskite quantum dots (QDs) with outstanding optoelectronic properties have already been extensively investigated and implemented in various applications. However, great challenges exist for the fabrication of nanodevices including toxicity, fast anion-exchange reactions, and unsatisfactory stability. Here, the ultrathin, core–shell structured SiO2 coated Mn2+ doped CsPbX3 (X = Br, Cl) QDs are prepared via one facile reverse microemulsion method at room temperature. By incorporation of a multibranched capping ligand of trioctylphosphine oxide, it is found that the breakage of the CsPbMnX3 core QDs contributed from the hydrolysis of silane could be effectively blocked. The thickness of silica shell can be well-controlled within 2 nm, which gives the CsPbMnX3@SiO2 QDs a high quantum yield of 50.5% and improves thermostability and water resistance. Moreover, the mixture of CsPbBr3 QDs with green emission and CsPbMnX3@SiO2 QDs with yellow emission presents no ion exchange effect and provides white light emission. As a result, a white light-emitting diode (LED) is successfully prepared by the combination of a blue on-chip LED device and the above perovskite mixture. The as-prepared white LED displays a high luminous efficiency of 68.4 lm W?1 and a high color-rendering index of Ra = 91, demonstrating their broad future applications in solid-state lighting fields.
关键词: quantum dots,white light-emitting diodes,core–shells,Mn2+-doping,SiO2-coating
更新于2025-11-14 15:32:45
-
Tricolor- and White Light–Emitting Ce <sup>3+</sup> /Tb <sup>3+</sup> /Mn <sup>2+</sup> -Coactivated Li <sub/>2</sub> Ca <sub/>4</sub> Si <sub/>4</sub> O <sub/>13</sub> Phosphor via Energy Transfer
摘要: Single-component tunable Li2Ca4Si4O13:Ce3+,Tb3+,Mn2+ phosphors were successfully synthesized at 950 °C. Li2Ca4Si4O13:Ce3+,Tb3+ exhibits two luminescence peaking at 430 and 550 nm, which originated from the allowed 5d → 4f transition of the Ce3+ ion and the 5D4 → 7FJ (J = 6, 5, 4, 3) transition of the Tb3+ ion, respectively. Moreover, by codoping Ce3+ ions in the Li2Ca4Si4O13:Mn2+ system, yellow-red emission from the forbidden transition of Mn2+ could be enhanced. Under UV excitation, dual energy transfers (ETs), namely, Ce3+ → Mn2+ and Ce3+ → Tb3+, are present in the Li2Ca4Si4O13:Ce3+,Tb3+,Mn2+ system. The ET process was confirmed by the overlap of the excitation spectra, variations in the emission spectra, ET efficiency, and decay times of phosphors. In addition, quantum yields and CIE chromatic coordinates are presented. The emission color of these phosphors can be tuned precisely from blue to green via ET of Ce3+ → Tb3+ and from blue to yellow via ET of Ce3+ → Mn2+. White light can also be achieved upon excitation of UV light by properly tuning the relative composition of Tb3+/Mn2+. This result indicates that the developed phosphor may be regarded as a good tunable emitting phosphor for UV light-emitting diodes.
关键词: phosphor,energy transfer,Mn2+,Tb3+,Li2Ca4Si4O13,Ce3+,white light-emitting diodes
更新于2025-11-14 15:29:11
-
Full color carbon dots through surface engineering for constructing white light-emitting diodes
摘要: White light-emitting diodes (WLEDs) devices are replacing the filament lamp and they can provide a light close to the natural sunlight, which have thus drawn considerable attention in these recent years. It remains a scientific challenge to develop WLEDs using environmentally friendly, easy-to-process and cost-effective phosphors. Here we synthesized blue-, green- and red-carbon dots (denoted as B-, G- and R-CDs) by a facile solvothermal method with high dispersity both in aqueous and organic solvent. The quantum yield (QY) of the R-CDs achieved up to 24.7%. These CDs can be easily dissolved in polyvinylpyrrolidone (PVP) colloid, leading to the production of ultraviolet (UV)-excited LED devices to avoid the retinal damage caused by blue ray excitation. The fluorescence emission of the WLED has a wide band, covering the whole visible light region. Importantly, the influence of doping that gives rise to the change of emissive colors has been elucidated by X-ray photoelectron spectroscopy (XPS) combined with a computation method in order to provide a systematic controllable tuning on the functionalization of CDs. As such, WLEDs were demonstrated with color coordinates of (0.33, 0.33), a color temperature of 5612 K in the CIE chromaticity diagram with good anti-photobleaching and a color rendering index (CRI) of 89.
关键词: polyvinylpyrrolidone,White light-emitting diodes,solvothermal method,UV-excited LED devices,density functional theory,quantum yield,X-ray photoelectron spectroscopy,carbon dots
更新于2025-11-14 15:18:02
-
A novel orange–red emitting phosphor Sr2LuTaO6:Sm3+ for WLEDs
摘要: A novel double perovskite tantalite orange–red light emitting Sr2LuTaO6:Sm3+ phosphor was synthesized by the solid state reaction. The phase, crystal structure, photoluminescence properties, thermal stability and decay curves were studied. The X-ray diffraction patterns indicated that the phosphor has a pure phase of cubic phase structure. Excited by near-ultraviolet light at 407 nm, the sample exhibited three sharp emission peaks at 564 nm, 600 nm, 645 nm corresponding to the 4G5/2 → 6HJ (J = 5/2, 7/2 and 9/2) transitions, respectively. The optimum doping concentration of Sm3+ ions was determined to be 5 mol% and the concentration quenching process comes from the energy transfer among nearest-neighbor ions. The as-prepared phosphors showed excellent thermal stability, the integral intensity at 423 K is about 91.10% of the initial intensity. The CIE chromaticity coordinates of Sr2LuTaO6:Sm3+ phosphors located in orange–red region. The results suggest that Sr2LuTaO6:Sm3+ phosphors have great potential application in white light-emitting diodes.
关键词: luminescence,thermal stability,white light-emitting diodes,Sr2LuTaO6:Sm3+,phosphor
更新于2025-11-14 15:13:28
-
Narrow-Band Green-Emitting Sr <sub/>2</sub> MgAl <sub/>22</sub> O <sub/>36</sub> :Mn <sup>2+</sup> Phosphors with Superior Thermal Stability and Wide Color Gamut for Backlighting Display Applications
摘要: The narrow-band emitting phosphors have been extensively investigated in recent years, with the expectation that a wide color gamut of phosphor-converted backlighting device could be fabricated. Due to the weak electric–phonon interaction and low structural relaxation caused by the high rigid crystal structure and symmetric coordination environment, Sr2MgAl22O36:Mn2+ (SMAO:Mn2+) shows a narrow full-width at half-maximum of 26 nm, a high color purity of 81.5%, and a low thermal quenching (82% at 473 K of the initial intensity at 298 K). Using K2SiF6:Mn4+ as the red phosphor, SMAO:Mn2+ as the green one, and GaN-based chip as the blue component, the white light-emitting diode exhibits a National Television Standard Committee value of 127%. All the results demonstrate that the SMAO:Mn2+ phosphor has a promising application in the field of advanced wide-color-gamut backlight display, and the establishment of the relationships between the narrow-band emission and crystal structure can also be applied to design other novel narrow-band phosphors for backlighting technologies.
关键词: color gamut,inorganic phosphors,narrow-band emission,white light-emitting diodes,Sr2MgAl22O36:Mn2+,thermal stability,backlight displays
更新于2025-09-23 15:23:52
-
[IEEE 2019 20th International Conference on Electronic Packaging Technology(ICEPT) - Hong Kong, China (2019.8.12-2019.8.15)] 2019 20th International Conference on Electronic Packaging Technology(ICEPT) - Self-Assembled Copper Nanoclusters-Based White Light Emitting Diodes With High Performance
摘要: Metal nanoclusters, composed of a few to a hundred atoms, whose size is close to the Fermi wavelength of electrons, have become a new type of phosphor materials due to their unique electronic structure and excellent performance. And metal nanoclusters have been applied in various applications, such as bioimaging, chemical biosensing, optoelectronic devices, etc. At present, researchers have synthesized and studied gold and silver nanoclusters, but Au and Ag nanoclusters have one drawback: expensive. At the same time, copper nanoclusters have attracted people's attention because of their non-toxicity, large Stokes shift and economy. In this paper, we fabricated 1-dodecanethiol (DT)-capped self-assembled copper nanoclusters in colloidal solution with yellow light emission and characterized the prepared self-assembled copper nanoclusters by UV–visible spectra, TEM and PL characterization methods. Self-assembled copper nanoclusters were used as color conversion layers for the manufacture of white light-emitting diodes. The prepared white LED has good color properties, the color rendering index was 79.3, the CIE color coordinates located at (0.3213,0.3255) and the color temperature was 6067K. This indicates that copper nanoclusters show potential for applications in white lighting emitting diodes as a new type of low-cost and superior photoluminescent material candidates.
关键词: Copper Nanoclusters,Photoluminescence,White Light Emitting Diodes,Quantum Dots
更新于2025-09-23 15:21:01
-
Highly Efficient and Stable CsPbBr3 Perovskite Quantum Dots by Encapsulating in Dual-Shell Hollow Silica Spheres for WLEDs
摘要: Poor stability of CsPbX3 (X = Cl, Br or I) perovskite quantum dots (QDs) has greatly hindered their practical photoelectric applications, and how to improve it still remains a critical challenge. Herein, we encapsulated the CsPbBr3 QDs into a dual-shell hollow silica (SiO2) spheres via a simple successive ionic layer adsorption and reaction (SILAR) method. The hierarchical dual-shell structures permit CsPbBr3 QDs to be anchored on the interior of the SiO2 spheres while keeping the outside surface undisturbed, which can protect CsPbBr3 QDs from direct exposure to the atmosphere. Due to the comprehensive protection of dual-shell hollow SiO2 spheres, the CsPbBr3/SiO2 nanospheres exhibit markedly enhanced stability against light and heat, with residual PL intensity of 89% after continuous exposure of 72 h to UV light and 65% at 100?C heat treatment, respectively. In addition, an optimal PLQY of 89% is obtained with suppressed nonradiative recombination. Finally, the fabricated white light-emitting diodes (LEDs) device by employing CsPbBr3/SiO2 green phosphors could achieve a wide color gamut covering up to 136% of the NTSC standard. This work provides a novel SiO2-based encapsulation approach to solve the intrinsic instability issues of CsPbBr3 QDs, which has a profound impact on their practical applications.
关键词: photoluminescence quantum yield,CsPbBr3 quantum dots,dual-shell hollow silica spheres,stability,white light-emitting diodes
更新于2025-09-23 15:21:01
-
Synthesis of Silica-Coated Csa??PbBra?? and Csa??Pb(Br0.4I0.6)a?? Quantum Dots With Long Lifetime and Enhancement in Quantum Efficiency for WLEDs Applications: Lightings With High CRI and Displays With Wide Color Gamut
摘要: To focus on developing white light-emitting diodes (WLEDs) for lightings with high color rendering index (CRI), low correlated color temperature (CCT), and the displays with wide color gamut, inorganic perovskite quantum dots (QDs) such as CsPbX3 (X = Cl, Br, I) were the promising candidate owing to the excellent optoelectronic properties such as high quantum efficiency, narrow emission wavelengths, and tunable emission spectrum. Nevertheless, the CsPbBr3QDs in the form of powders or films had a poor air stability and severe decline of quantum efficiency. Therefore, in this article, a new idea was proposed that 0-D green–red perovskite QDs powders such as Cs4PbBr6 and Cs4Pb(Br0.4I0.6)6 with improved quantum efficiency and long lifetime were first developed by silica-coated method and crystal phase transition in low-temperature synthesis. The quantum efficiency in green Cs4PbBr6 powders could be significantly enhanced from 31.41% to 45.87% and red Cs4Pb(Br0.4I0.6)6 powders was 22.79%. Moreover, the as-prepared perovskite QD powders and commercial YAG phosphors combined with blue chips were applied to high-quality WLEDs for lightings and displays. More importantly, the as-fabricated wide Commission Internationale de l’Eclairage (CIE) color gamut WLEDs for displays possessed 115% National Television System Committee (NTSC) coverage rate and luminous efficiency of 51 lm/W under 20-mA driving current. On the other hand, the constructed WLEDs for high-power lightings would generate a warm white light with a luminous efficiency of 38 lm/W, extremely high CRI of 92.8, and low CCT of 3828 K under 350 mA. Hence, the proposed green–red perovskite QD powders had outstanding potential applications in WLEDs.
关键词: white light-emitting diodes (WLEDs),0-D perovskite quantum dots (QDs),backlights of displays,solid-state lightings
更新于2025-09-23 15:21:01
-
Synthesis and photoluminescence properties of Ca4La6(PO4)2(SiO4)4O2: Dy3+ phosphor with high thermal stability for white light-emitting diodes
摘要: Novel yellow emitting Ca4La6(PO4)2(SiO4)4O2: Dy3+ phosphors were synthesized by high-temperature solid-state reaction method. The crystal structure, diffuse reflection, photoluminescence, and photoluminescence excitation spectra, decay curves, as well as thermal stability were investigated in detail. Under 346?nm excitation, the phosphor exhibits two strong emission peaks at 479?nm and 585?nm, with the CIE coordinates located in the yellow region. When heated up to 150?°C, the Ca4La6(PO4)2(SiO4)4O2: 0.06Dy3+ phosphor still has 83% of the initial PL intensity at room temperature, indicating its high thermal stability. The results suggest that the as-prepared Ca4La6(PO4)2(SiO4)4O2: Dy3+ phosphor could serve as a promising candidate for near-ultraviolet white light-emitting diodes.
关键词: photoluminescence,Ca4La6(PO4)2(SiO4)4O2:Dy3+,thermal stability,white light-emitting diodes,phosphor
更新于2025-09-23 15:21:01