- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Hot Carrier and Surface Recombination Dynamics in Layered InSe Crystals
摘要: Layered indium selenide (InSe) is a van der Waals solid that has emerged as a promising material for high-performance ultrathin solar cells. The optoelectronic parameters that are critical to photoconversion efficiencies, such as hot carrier lifetime and surface recombination velocity, are however largely unexplored in InSe. Here, these key photophysical properties of layered InSe are measured with femtosecond transient reflection spectroscopy. The hot carrier cooling process is found to occur through phonon scattering. The surface recombination velocity and ambipolar diffusion coefficient are extracted from fits to the pump energy-dependent transient reflection kinetics using a free carrier diffusion model. The extracted surface recombination velocity is approximately an order of magnitude larger than that for methylammonium lead-iodide perovskites, suggesting that surface recombination is a principal source of photocarrier loss in InSe. The extracted ambipolar diffusion coefficient is consistent with previously reported values of InSe carrier mobility.
关键词: transient reflection spectroscopy,hot carrier dynamics,Layered indium selenide,solar cell,van der Waals solid,surface recombination velocity,ambipolar diffusion coefficient
更新于2025-09-23 15:22:29
-
Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed Organic Complementary Logic via a Two-Step C?H Activation Strategy
摘要: High mobility ambipolar conjugated polymers are seriously absent regardless their great potential for flexible and printed plastic devices and circuits. Here, ambipolar polymers with ultrahigh balanced hole and electron mobility are developed via a two-step C–H activation strategy. Diketopyrrolopyrrole-benzothiadiazole-diketopyrrolopyrrole (DBD) and its copolymers with thiophene/selenophene units (short as PDBD-T and PDBD-Se) are used as examples. PDBD-Se exhibits highly efficient ambipolar transport with hole and electron mobility up to 8.90 and 7.71 cm2 V?1 s?1 in flexible organic field-effect transistors, presenting a milestone for ambipolar copolymer screening. Based on this performance metrics and good solubility, PDBD-Se is investigated as inkjet-printable semiconductor ink for organic complementary logic circuits. Under ambient processing, maximum hole and electron mobilities reach 6.70 and 4.30 cm2 V?1 s?1, respectively. Printed complementary inverter and NAND gates with transition voltages near VDD/2 are fabricated, providing an easy-handling, general material for printed electronics and logic.
关键词: ambipolar transport,semiconducting polymers,organic circuits,inkjet printing,C–H activation
更新于2025-09-23 15:22:29
-
Tunable Schottky barriers in ultrathin black phosphorus field effect transistors via polymer capping
摘要: It is still a great challenge to avoid the degradation of ultrathin black phosphorus (BP) since its discovery in 2014. Various methods have been explored to stabilize the properties of ultrathin BP through capping technology or chemical passivation. Besides, the large metal-semiconductor contact resistance is also one of the critical issues. The two problems hinder the further development of ultrathin BP devices. Herein, we demonstrate that polymethyl methacrylate (PMMA) capping can not only enhance the durability of the ultrathin BP effectively and nondestructively, but also tune the effective Schottky barriers (SBs) formed at the interfaces between the metal and semiconductor dramatically. Particularly, the Schottky barrier (SB) for electron injection from metal to semiconductor is decreased by ~ 13 meV and the performance of the BP field effect transistor (FET) is strongly enhanced with the current on/off ratio increased by 6.8 times for the hole conduction after the PMMA capping. In addition, after the electron beam irradiation to the PMMA layer, the charge neutral point of the BP FET exhibits remarkable negative shift resulting in the electron dominated semiconductor channel at zero gate voltage. Furthermore, through partially capping the BP channel, a prototype of BP p-n diode was demonstrated with a maximum rectification factor of 21.3. The diode performs quite well with just a quarter of the BP channel capped by the PMMA layer. Our findings suggest that the PMMA capped ultrathin BP would be a promising choice for future device applications.
关键词: PMMA capping,ambipolar field effect transistor,ultrathin black phosphorus,Schottky barrier
更新于2025-09-23 15:22:29
-
Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for Higha??Efficiency Perovskite Solar Cells
摘要: 2D black phosphorene (BP) carries a stellar set of physical properties such as conveniently tunable bandgap and extremely high ambipolar carrier mobility for optoelectronic devices. Herein, the judicious design and positioning of BP with tailored thickness as dual-functional nanomaterials to concurrently enhance carrier extraction at both electron transport layer/perovskite and perovskite/hole transport layer interfaces for high-efficiency and stable perovskite solar cells is reported. The synergy of favorable band energy alignment and concerted cascade interfacial carrier extraction, rendered by concurrent positioning of BP, delivered a progressively enhanced power conversion efficiency of 19.83% from 16.95% (BP-free). Investigation into interfacial engineering further reveals enhanced light absorption and reduced trap density for improved photovoltaic performance with BP incorporation. This work demonstrates the appealing characteristic of rational implementation of BP as dual-functional transport material for a diversity of optoelectronic devices, including photodetectors, sensors, light-emitting diodes, etc.
关键词: ambipolar carrier mobility,cascade interfacial carrier extraction,black phosphorene,perovskite solar cells,band energy alignment
更新于2025-09-23 15:21:01
-
Ambipolar Memristive Phenomenon in Large-Scale, Few-Layered αMoO <sub/>3</sub> Recrystallized Films
摘要: Studies of two-dimensional (2D) oxide materials are not common, primarily because of the difficulty in obtaining crystal sizes large enough to fabricate devices structures from exfoliation of bulk crystals. Among the layered oxide materials, alpha molybdenum trioxide (αMoO3) is of particular interest because of its wide bandgap and high hole mobility. Here the growth of highly uniform, large-scale, ambipolar, few-layered αMoO3 that is appropriate for nanofabrication is reported. Crystal grain sizes on the order of 5 μm are observed across samples as large as 10 × 10 mm2 with hexagonal grain boundaries and surface roughness of less than 500 pm rms. Exact [010] crystal orientation, characteristic of the layered atomic structure αMoO3, is observed. The measured bandgap energy is ≈2.8 eV. Carrier mobilities in polycrystalline films are and 2.28 cm2 V?1 s?1 (hole) and 3.18 cm2 V?1 s?1 (electron) at room temperature in air. Simple field-effect device structures are characterized by ambipolar carrier transport producing memristive device characteristics, which is attributed to a polarization field produced by the strong coupling between electron and phonons in these crystals.
关键词: ambipolar,2D materials,molybdenum oxides,memristor
更新于2025-09-23 15:21:01
-
[IEEE 2020 5th International Conference on Devices, Circuits and Systems (ICDCS) - Coimbatore, India (2020.3.5-2020.3.6)] 2020 5th International Conference on Devices, Circuits and Systems (ICDCS) - Heterojunction Tunnel Field Effect Transistors a?? A Detailed Review
摘要: Tunnel FET(TFET) can provide ultra-low quiescent (~pA) current. Some of the essential parameters for determining the characteristics of TFET are high ION current, constrained Subthreshold slope value, and reduced ambipolar leakage. TFET experiences a sub-threshold decrease of less than 60mV / decade in the process of the sub-threshold slope and hence higher transconductance per bias current than MOSFET. This article would be beneficial to get a review of various device structures and their performances of Tunnel FET. In this paper, we examined the multiple TFET device structures and compared their performances for attaining the desired ION / IOFF.
关键词: Tunnel FET(TFET),ambipolar,ION / IOFF
更新于2025-09-23 15:19:57
-
Hybrid gate dielectrics: a comparative study between polyvinyl alcohol/ $$\hbox {SiO}_{2}$$ SiO 2 nanocomposite and pure polyvinyl alcohol thin-film transistors
摘要: Polyvinyl alcohol (PVA) thin films as polymer gate dielectrics, with and without SiO2 nanoparticles were fabricated using spin-coating. Surface roughness and hydrophilicity of PVA and PVA/SiO2 thin films were studied by contact-angle measurements and atomic force microscopy. The dielectric properties were characterized via capacitance and leakage-current measurements on metal–insulator–metal structures. In order to further investigate the application potential of such materials as a replacement for conventional inorganic dielectrics such as SiO2 in organic thin-film transistors, devices were fabricated based on these polymers using α, ω-dihexylquaterthiophene as an active layer. Performance of the devices was realized by electrical measurements and Kelvin probe force microscopy. All transistors showed hole and electron mobilities in the low-voltage range. PVA/SiO2 films showed larger capacitance, less hydrophilicity, rougher surfaces and considerable leakage currents compared with those with neat PVA. Although integrating nanoparticles modified surface electronic properties and showed a shift in surface potential as observed in Kelvin probe force measurements, it appears that non-polymeric and neat polymeric dielectric materials could still be a privilege to nanocomposite polymeric dielectrics for optoelectronic applications.
关键词: ambipolar thin-film transistor,scanning probe microscopy (SPM),surface chemistry,electrical and structural properties,Polymer dielectrics
更新于2025-09-19 17:15:36
-
Theoretical study on the charge transport properties of three series dicyanomethylene quinoidal thiophene derivatives
摘要: It is very important to analyse the most advantageous connection style for quinoidal thiophene derivatives, which are used in n-type organic semiconductor transport materials. In the present work, the charge transport properties of three series of quinoidal thiophene derivatives, oligothiophene (series A), thienothiophene (series B) and benzothiophene (series C), are systematically investigated by employing the full quantum charge transfer theory combined with kinetic Monte-Carlo simulation. The single crystal structures of the molecules we constructed were predicted using the USPEX program combined with density functional theory (DFT) and considering the dispersion corrected. Our theoretical results expounded that how the different connection styles, including oligo-, thieno-, benzo- thiophene in the quinoidal thiophenes derivatives, effectively tune their electronic structures, and revealed that how their intermolecular interactions affect the molecular packing patterns and hence their charge transport properties by symmetry-adapted perturbation theory (SAPT). In the meanwhile we also elucidated the role of end-cyano groups in noncovalent interactions. Furthermore, it is clarified that the quinoidal thiophene derivatives show excellent carrier transport properties due to their optimal molecular stacking motifs and larger electronic couplings besides low energy gap. In addition, our theoretical results demonstrate that quinoidal oligothiophene derivatives (n=3~5) with more thiophene rings will have ambipolar transport properties, quinoidal thienothiophene and benzothiophene derivatives should be promising alternatives as n-type OSC. When we focused only on the electronic transport properties in the three series of molecules, quinoidal benzothiophene derivatives are slightly better than quinoidal oligothiophene and thienothiophene derivatives.
关键词: Crystal structure prediction,Dicyanomethylene quinoidal thiophene,N-type and ambipolar organic semiconductors,Charge transport property,Intermolecular interactions
更新于2025-09-19 17:15:36
-
The effects of air, oxygen and water exposure on the sub-bandgap absorption, the electronic conductivity and the ambipolar diffusion length in highly crystalline microcrystalline silicon films for photovoltaic applications
摘要: Reversible and irreversible changes due to long term air and short term de-ionized water (DIW) or pure oxygen exposure were investigated in about 1 μm thick hydrogenated microcrystalline silicon (μc-Si:H) films deposited on rough glass substrates, thereby comparing highly crystalline with compact material. Time and temperature dependent dark conductivity, steady-state photoconductivity, the steady-state photocarrier grating and dual-beam photoconductivity methods have been used to study the effects. Standard measurement procedures defined previously have been carefully applied to record the changes after different treatments using the steady-state methods under light. After long term air exposure of highly crystalline μc-Si:H films, a thermal annealing step leads to an increase in dark conductivity (σD) and steady-state photoconductivity (σph) as well as to a significant increase in the sub-bandgap absorption. These effects are likely due to a reversible recovery from surface adsorbents in a porous microstructure after air exposure resulting in surface charge and Fermi level shifts in agreement with earlier results. Compact μc-Si:H films showed only marginal effects upon an annealing after long term air exposure suggesting much reduced susceptibility to surface adsorbent induced by Fermi level shifts. Five hours exposure to de-ionized water at 80 °C caused more than an order of magnitude increase in σD and σph and a substantial decrease in the sub-bandgap absorption spectrum in highly crystalline as well as in compact μc-Si:H films. In addition, minority carrier diffusion lengths measured by the steady-state photocarrier grating method improved significantly. The changes after exposure to water were not reversible upon our standard annealing procedure. Exposure to high purity oxygen gas at 150 °C resulted in similar effects like the exposure to DIW. Also here the changes in material properties were not reversible upon annealing. Results are discussed in terms of adsorption and chemical reactions on surfaces in the porous highly crystalline material versus the materials with more compact structures. Results are compared to earlier observations and consequences for device application will be indicated.
关键词: microcrystalline silicon,electronic conductivity,sub-bandgap absorption,photovoltaic applications,ambipolar diffusion length
更新于2025-09-19 17:13:59
-
Fast and broadband photoresponse of few-layer GeSe field-effect transistor with direct bandgaps
摘要: Few-to-monolayer germanium selenide, a new Ⅳ-Ⅵ group layered material recently fabricated by mechanical exfoliation and subsequent laser thinning, is promising in very fast and broadband optoelectronic applications for its excellent stability, natural p-type semiconductor, complicated band structures, and inert surface properties. However, large-scale production of such few-layer GeSe devices with superior performance is still in early stages. In this study, field-effect transistors (FETs) made of few-layer GeSe with direct bandgaps are fabricated. Transistor performance with Schottky contact characteristics is measured at room temperature. Field effect mobility of 4 cm2/Vs and drain currents modulated both in hole and electrons are measured. Photoresponse as a function of the illumination wavelength, power, and frequency are characterized. The few-layer GeSe transistor shows photoresponse to the illumination wavelengths from the visible up to 1400 nm, and photoresponse rise (fall) time of 13 μs (19 μs), demonstrating very broadband and fast detection. The ambipolar behavior and the photoresponse characteristics demonstrate great potential of few-layer GeSe for applications in high stability, very fast and broadband of optoelectronic devices.
关键词: broadband photoresponse,photoresponse time,ambipolar behavior,field effect transistors,direct bandgaps,few-layer GeSe
更新于2025-09-12 10:27:22