修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

260 条数据
?? 中文(中国)
  • The Future of Flexible Organic Solar Cells

    摘要: Extensive efforts have been devoted during the last decade to organic solar cell research that has led to remarkable progress and achieved power conversion efficiencies (PCEs) in excess of 10%. Among the existing flexible organic solar cells, ultrathin organic solar cells with a total thickness <10 μm have important advantages, including good mechanical bending stabilities and good conformability. These advantages have led to power generation solutions for wearable electronics. In this essay, the progress of flexible and ultrathin organic solar cells, and the future research directions pertaining to these cells are discussed based on the potential applications of textile-compatible solar cells. Both process engineering and development of the material of ultrathin substrate films have improved the PCE of ultrathin organic solar cells, which in turn have led to the small PCE difference between flexible organic solar cells with substrate thickness >10 μm and ultrathin organic solar cells with substrate thickness ≤10 μm. Key technologies for the further improvement of PCE of flexible/ultrathin organic solar cells are discussed. Strategies to improve the stability and some important aspects, which determine the mechanical robustness of flexible organic solar cells, are also presented and discussed.

    关键词: organic solar cells,flexibility,stretchability,power conversion efficiency

    更新于2025-09-23 15:21:01

  • Tin halide perovskite films made of highly oriented 2D crystals enable more efficient and stable lead-free perovskite solar cells

    摘要: Low toxicity and an ideal energy bandgap make 2D Ruddlesden-Popper tin-based halide perovskites a promising photovoltaic material. However, the disordered crystal orientation and the oxidation of Sn2+ to Sn4+ still need to be addressed. Here, we demonstrate that the annealing of FASnI3 assisted by phenyl ethyl ammonium chloride enables the formation of more ordered 2D tin-based perovskite crystals oriented vertically. We use in-situ synchrotron-based grazing incident X-ray diffraction (GIXRD) to correlate the higher crystal orientation to the better device performance. We measured a maximum power conversion efficiency of >9%. Furthermore, we demonstrate that the phenyl ethyl ammonium chloride acts as a barrier layer at the surface of the crystals protecting the tin from the oxidation. Hence, this work paves the way for more efficient and stable lead-free perovskite solar cells.

    关键词: phenyl ethyl ammonium chloride,photovoltaic material,crystal orientation,lead-free perovskite solar cells,oxidation of Sn2+,2D Ruddlesden-Popper tin-based halide perovskites,power conversion efficiency

    更新于2025-09-23 15:21:01

  • Alkali Metal Ions: A Secret Ingredient for Metal Nanocluster-Sensitized Solar Cells

    摘要: The presence of alkali metal ions (AMIs) during the adsorption of thiolated Au nanoclusters (NCs) onto TiO2 plays a critical role in achieving high power conversion efficiency and suppressing anomalous current?voltage hysteresis in metal nanocluster-sensitized solar cells. This hidden role of the AMIs is intimately related to the adsorption strength between the NCs and TiO2, indicating the importance of seeking a comprehensive understanding of NC?TiO2 interfaces and devising interfacial engineering techniques to support the next advance in light energy conversion applications of NCs.

    关键词: alkali metal ions,metal nanoclusters,current?voltage hysteresis,power conversion efficiency,solar cells

    更新于2025-09-23 15:21:01

  • Toward Efficient Triple-Junction Polymer Solar Cells through Rational Selection of Middle Cells

    摘要: The photon energy losses of polymer solar cells (PSCs) routinely drag their experimental power conversion efficiencies (PCEs) far below the theoretical limits. We report herein efficient triple-junction PSCs (TJ-PSCs) with mitigated energy losses through rational selection of subcells. We reveal that avoiding strong photon competition between the front and middle cells is critical in balancing the absorption rate among subcells with realistic layer thicknesses. Efficient TJ-PSCs are achieved by stacking a front cell of PBDB-T-2F:PC71BM, a middle cell of PBDB-T:HF-TCIC, and a rear cell of PTB7-Th: IEICO-4F in series and connecting them with two functional interconnection layers. A PCE of 13.09% is obtained from champion devices, representing one of the best TJ-PSCs among the reported studies. It accounts for a 35% improvement in efficiency over those of single-junction PSCs with the same absorption range, which is mainly attributed to the reduced nonabsorbing and thermalization losses of TJ-PSCs.

    关键词: polymer solar cells,photon energy losses,power conversion efficiencies,nonfullerene acceptors,triple-junction

    更新于2025-09-23 15:21:01

  • Efficient All-Inorganic CsPbBr <sub/>3</sub> Perovskite Solar Cells by Using CdS/CdSe/CdS Quantum Dots as Intermediate Layers

    摘要: Highly e?cient all-inorganic perovskite solar cells require a fast charge transfer from CsPbBr3 to TiO2 to reduce the recombination from trap states. Herein, we insert a CdS/CdSe/CdS quantum dot (QD) layer between the TiO2 and CsPbBr3 layers to fabricate all-inorganic perovskite solar cells. By tuning the thicknesses of the CdSe layer of CdS/CdSe/CdS QDs, the conduction band (CB) levels can be adjusted to -3.72~-3.87 eV. After inserting the QD intermediate layer, the energy o?set between the CB of TiO2 and CsPbBr3 is reduced, thus leading to a charge transfer rate boost from 0:040 × 109 to 0:059 × 109 s?1. The power conversion e?ciency (PCE) of the solar cell with QD intermediate layer achieves 8.64%, which is 20% higher than its counterpart without QDs.

    关键词: CdS/CdSe/CdS quantum dots,power conversion efficiency,charge transfer,all-inorganic perovskite solar cells

    更新于2025-09-23 15:21:01

  • Organic Solar Cells Based on Small Molecule Donor and Polymer Acceptor Operating at 150 ?°C

    摘要: Organic Solar Cells Based on Small Molecule Donor and Polymer Acceptor Operating at 150 oC. Inorganic or organic solar cells always operate at temperature lower than 100 oC and are not suitable for operating at high temperature. In this work, using blends of small molecular donor and polymer acceptor (MD/PA-type) as the active layers, we develop efficient and stable organic solar cells (OSCs), which can operate at temperature up to 150 oC. The device exhibits a power conversion efficiency (PCE) of 9.51%, which is the highest value reported to date for MD/PA-type OSCs. After thermal treatment at 150 oC for 72 hours, the device can retain 84% of its initial PCE value. This superior device stability at high temperature is attributed to the high phase transition temperatures of the two materials in the MD/PA-type active layer. This work suggests a new advantage of high-temperature tolerance for OSCs.

    关键词: Power Conversion Efficiency,Small Molecule Donor,Organic Solar Cells,Polymer Acceptor,High Temperature Operation

    更新于2025-09-23 15:21:01

  • A two-fold engineering approach based on Bi2Te3 flakes towards efficient and stable inverted perovskite solar cells

    摘要: Perovskite solar cells (PSCs) are currently the leading thin-film photovoltaic technology owing to their high power conversion efficiency (PCE), as well as their low-cost and facile manufacturing process. Two-dimensional (2D) materials have been reported to improve both the PCE and the stability of the PSCs when incorporated across the device’s layered configuration. Hereby, a two-fold engineering approach is implemented in inverted PSCs by using ultra-thin Bi2Te3 flakes, i.e.: (1) to dope the electron transport layer (ETL) and (2) to form a protective interlayer above the ETL. Thorough steady-state and time-resolved transport analyses reveal that our first engineering approach improves the electron extraction rate and thus the overall PCE (+8% vs. reference cells), as a result of the favourable energy level alignment between the perovskite, the ETL and the cathode. Moreover, the Bi2Te3 interlayer through the second engineering approach, facilitates further the electron transport and in addition protects the underlaying structure against chemical instability effects leading to enhanced device’s performance and stability. By combining the two engineering approaches, our optimised PSCs reach a PCE up to 19.46% (+17% vs. reference cells) and retain more than 80% of their initial PCE, after the burn-in phase, over 1100 h under continous 1 Sun illumination. These performances are among the highest reported in literature for inverted PSCs.

    关键词: electron transport layer,Perovskite solar cells,Bi2Te3 flakes,stability,power conversion efficiency

    更新于2025-09-23 15:21:01

  • Improved energy harvesting using well-aligned ZnS nanoparticles in bulk-heterojunction organic solar cell

    摘要: Zinc sulphide (ZnS) nanoparticles (NPs) were synthesized by low temperature colloidal chemistry to produce stable zinc blend structure. The metallic ZnS NPs were incorporated into poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61-butyric acid methyl ester (PCBM) blend photoactive layer to improve the overall performance of organic solar cells (OSC). The newly fabricated devices have exhibited enhanced photocurrent which is likely to come from utilizing the near-field and light scattering effects due to the NPs. The short-circuit current density of the best solar cell was enhanced to as high as 15.65 mA cm?2 followed by 51% and 4.0% maximum fill-factor (FF) and power conversion efficiency (PCE), respectively. This enhancement is very comparable to those obtained from the use of expensive plasmonic gold and silver nanoparticles. The current results are encouraging to improve the performance of OSC through a facile yet cost-effective and environmentally friendly approach of metal nanoparticles synthesis.

    关键词: Power conversion efficiency,Zinc sulphide,Organic solar cells,Photocurrent,Nanoparticles

    更新于2025-09-23 15:21:01

  • Mn Doping CsPbI3 Film Towards High-Efficiency Solar Cell

    摘要: A doping technique that introduces suitable elements into the host material is extensively utilized to modulate perovskite lattice structure, stabilize crystallographic phases and achieve various optical and electronic properties. In this work, we substitute Pb2+ in CsPbI3 film with Mn2+ to improve the phase stability of the material. The crystalline quality of perovskite materials with Mn2+ doping is significantly improved, and the defect densitys is reduced. The power conversion efficiency (PCE) of an inorganic perovskite solar cell with optimized Mn2+ doping (2%) reached 16.52 %, which is higher than the 15.05% of the reference, with an enhancement of ~ 10%. Simultaneously, the humidity and thermal stability were boosted by the Mn doping, which is attributed to the introduction of Mn shrinking the lattice of the perovskite material and enhancing the formation energy of the CsPbI3 film.

    关键词: Power Conversion Efficiency,Mn-Doping,CsPbI3,Phase Stability,Perovskite Solar cell

    更新于2025-09-23 15:21:01

  • Challenges and opportunities for efficiency boost of next generation Cu(In,Ga)Se <sub/>2</sub> solar cells: prospect for a paradigm shift

    摘要: Cu(In,Ga)Se2 photovoltaic technology has notably progressed over the past years. Power conversion efficiencies above 23% were reached in spite of the absorber polycrystalline nature. Although efficiencies are still far from the practical limits, the material quality is approaching that of III-V compounds that yield the most efficient solar cells. High carrier lifetime, low open circuit voltage deficit and external radiative efficiency in single-digit percentage range, suggest the next efficiency boost may arise from the implementation of alternative device architectures. In this perspective paper, we describe the current challenges and pathways to enhance the power conversion efficiency of Cu(In,Ga)Se2 solar cells. Specifically, we suggest the use of non-graded absorbers, integration of charge selective contacts and maximization of photon recycling. We examine these concepts by a semi-empirical device modelling approach, and show that these strategies can lead to efficiencies of 29% under the AM1.5 global spectrum. An analysis whether or not current state-of-the-art Cu(In,Ga)Se2 solar cells already benefit from photon recycling is also presented.

    关键词: Cu(In,Ga)Se2,charge selective contacts,photon recycling,power conversion efficiency,solar cells

    更新于2025-09-23 15:21:01