- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Colloidal-Quantum-Dot-in-Perovskite Nanowires
摘要: Colloidal quantum dots are materials of interest in infrared detection – a consequence of their near-infrared light harvesting capability, tunable bandgap, and solution-processing. Herein we develop a quantum-dot-in-perovskite-nanowire consisting of PbS quantum dots embedded inside MAPbI3 nanowires. The kinetics of perovskite nanowire growth were tracked. We found that N, N-dimethylformamide induced the formation of perovskite nanowires, and that their growth was accelerated upon PbS quantum dot inclusion. We then used this nanocomposite to fabricate photodetectors that showed a light response from the visible to near infrared region up to 940 nm. Finally, a flexible photodetector was fabricated on a polyethylene terephthalate substrate.
关键词: MAPbI3 nanowires,flexible photodetector,PbS quantum dots
更新于2025-11-14 17:04:02
-
Printed Higha??Density and Flexible Photodetector Arrays via Sizea??matched Heterogeneous Microa??/Nanostructure
摘要: Semiconductor/metal binary systems constitute the core components in electronic/photonic devices. The domain size of the heterostructure should be comparable to the charge diffusion length for superior photoelectric response. However, the fabrication of size-matched heterostructures is still a challenge, especially for printed devices. Here, a high-density photodetector array with lateral semiconductor/metal heterostructure is achieved via the template-assisted sequentially printing strategy. The Ag/PBDB-T:ITIC/Ag based lateral heterojunction that matches the charge diffusion length in the charge transfer process provides high light response sensitivity (D* = 3.41 × 1012 Jones, R = 12.9 A W?1). Moreover, the printed pixel interval can be decreased to 10 μm (106 pixels cm?2; resolution: 2.5 × 103 dpi). As the printing strategy can be implemented on soft substrates, the photodetector arrays are endowed with the flexibility. This work demonstrates a simple and effective strategy for chip-scale fabrication of flexible high-performance photodetectors, which validates the potential of printed heterogeneous micro-/nanostructures for integrated active electronics and optics.
关键词: flexible photodetector arrays,light imaging,sequential printing,heterostructures
更新于2025-09-23 15:21:01
-
Inkjet-Printed Organohalide 2D Layered Perovskites for High-Speed Photodetectors on Flexible Polyimide Substrates
摘要: The synthesis of solution-processed two-dimensional organohalide layered (CH3(CH2)3NH3)2(CH3NH3)n?1PbnI3n+1 (n = 2, 3, and 4) perovskites is presented, where inkjet printing was used to fabricate heterostructure flexible photodetector (PD) devices on polyimide (PI) substrates. Inks for the n = 4 formulation were developed to inkjet-print PD devices that were photoresponsive to broadband incoming radiation in the visible regime, where the peak photoresponsivity R was calculated to be ~0.17 A/W, which is higher compared to prior reports, while the detectivity D was measured to be ~3.7 × 1012 Jones at a low light intensity F ≈ 0.6 mW/cm2. The ON/OFF ratio was also high (~2.3 × 103), while the response time τ on the rising and falling edges was measured to be τ ≈ 24 ms and τ ≈ 65 ms, respectively. Our strain-dependent measurements, conducted here for the first time for inkjet-printed perovskite PDs, revealed that the Ip decreased by only ~27% with bending (radius of curvature of ~0.262 cm?1). This work demonstrates the tremendous potential of the inkjet-printed, composition-tunable, organohalide 2D perovskite heterostructures for high-performance PDs, where the techniques are readily translatable toward flexible solar cell platforms as well.
关键词: organohalide 2D perovskites,flexible photodetector,inkjet printing,photoluminescence spectroscopy,strain dependency
更新于2025-09-23 15:19:57
-
SbSI microrod based flexible photodetectors
摘要: In this paper, SbSI microrods is prepared by using a simple hydrothermal method via sulfur powder as sulfur source. The as-synthesized SbSI microrods with sulfur as sulfur powder source has better flexibility than that of SbSI with thiourea as sulfur source due to decreasing force constant between Sb and S atom. SbSI microrod based flexible photodetectors exhibit higher specific detectivity of up to 5.43×1010 Jones, fast response speed (rise time and fall time of 61 ms and 128 ms, respectively) and also show low dark current less than 50 pA. Especially, the photoresponse performance of the SbSI microrod based flexible photodetectors are almost unchanged after different bending curvatures and bending times more than 2000 times.
关键词: higher specific detectivity,fast response speed,SbSI microrods,flexible photodetector
更新于2025-09-23 15:19:57
-
High-Performance Free-Standing Flexible Photodetectors Based on Sulfur-Hyperdoped Ultrathin Silicon
摘要: Flexible photodetectors (PDs) prepared with silicon-based materials have received considerable attention for use in a wide range of portable and wearable applications. In this study, we present the first free-standing flexible PD based on sulfur-hyperdoped ultrathin silicon, which was fabricated using a femtosecond laser in SF6 atmosphere. It is found that the fabricated device exhibits excellent performance of broadband photoresponse from 400 to 1200 nm, with peak responsivity of 63.79 A/W @ 870 nm at a low bias voltage of -2 V, corresponding to an external quantum efficiency reaching 9092%, which surpasses most values reported for silicon-based flexible PDs. In addition, the device shows a fast response speed (rise time τr=68 μs) and stable detection performance with good mechanical flexibility. The high-performance PD described here suggests a promising way in flexible applications for sensors, imaging systems, and optical communication systems.
关键词: flexible photodetector,ultrathin silicon,black silicon,sulfur-hyperdoped,femtosecond laser
更新于2025-09-19 17:13:59
-
Porous single-wall carbon nanotube templates decorated with all-inorganic perovskite nanocrystals for ultra-flexible photodetectors
摘要: As an inevitable optoelectronic material with unique properties, halide perovskites attracted increasing attention in recent years. Meanwhile, hybridization of nanostructured perovskites with one-dimensional (1D) or two-dimensional (2D) functional materials has exhibited unique applications in nanotechnology. In this communication, a highly conducting porous single-wall carbon nanotube (p-SWCNT) template decorated with phase-pure CsPbBr3 nanocrystals by simple solution-phase technique was demonstrated, and the ultra-flexible photodetector Au/p-SWCNT:CsPbBr3/Au showed high sensitivity even in highly bending state. Also, the mechanism of wetting CsPbBr3 along p-SWCNT and the detailed fabrication process for ultra-flexible photodetectors were highlighted. The direct contact (in-situ) on p-SWCNT by crystallization of perovskite precursor can enhance the charge transfer at their interface effectively. At applied bias of +5 V, the optimized photodetector Au/p-SWCNT:CsPbBr3/Au exhibits a maximum photoresponsivity of 41.0 AW-1 with a specific detectivity of 1.67×1012 Jones under an incident 232 μW/cm2 520 nm illumination. In addition, it exhibits excellent mechanical and electrical properties even under high strain (i.e. bending angle up to -17°) and recovers the original performance after repeated bending cycles upto 1000 times. Our experimental results showed that such a hybrid materials provide a promising method for rigid and flexible optoelectronic devices.
关键词: Porous single-wall carbon nanotube (p-SWCN),inorganic perovskite nanocrystals,flexible photodetector,CsPbBr3,visible light photodetector
更新于2025-09-12 10:27:22
-
Piezoelectric Modulation of Broadband Photoresponse of Flexible Tellurium Nanomesh Photodetectors
摘要: Flexible photodetector shows great potential applications in intelligent wearable devices, health monitoring, and biological sensing. In this work, single crystal β-tellurium nanowires were grown on flexible muscovite by molecular beam epitaxy, constructing high-density ordered nanomesh structure. The prepared photodetectors based on tellurium nanomesh exhibit excellent mechanical flexibility, fast response in a broad range from ultraviolet to near-infrared, and good photosensitivity. We found that the flexible photodetectors with Shottky contact drastically suppressed dark current, while the response speed was lowered in comparison to the devices with ohmic contact, as holes would take long time to tunnel through the Shottky barrier between metal and p-type Te. Moreover, photoresponse of flexible Shottky photodetectors can be modulated by piezoelectricity of tellurium, and pronounced photocurrent increase after many times of bend. Under external stress, polarization charges could tune Shottky barrier height of the metal/tellurium, resulting in variation of photocurrent. The research not only explores the broadband photoresponse and piezoelectric effect of tellurium nanomesh, but also promotes the integration and development of broadband flexible optoelectronic devices.
关键词: tellurium nanomesh,piezoelectric effect,broadband photoresponse,molecular beam epitaxy,flexible photodetector
更新于2025-09-11 14:15:04
-
Wearable Gallium Oxide Solar-blind Photodetectors on Muscovite Mica Having Ultra-High Photoresponsivity And Detectivity With Added High Temperature Functionalities
摘要: Wearable Gallium oxide solar-blind photodetector fabricated on muscovite mica is reported for room temperature as well as high temperature operations. The ultra-high photoresponsivity of 9.7 A/W is obtained for 5V applied bias at room temperature under 75 μW/cm2 weak illumination of 270 nm wavelength. The detector enables very low noise equivalent power (NEP) of 9×10-13 W/Hz1/2 and ultra-high detectivity of 2×1012 jones which shows the magnificent detection sensitivity. Further, bending tests are performed for robust utilization of flexible detectors up to 500 bending cycles with each bending radius of 5 mm. After 500 bending cycles, device shows slight photocurrent decrease. The bending performances exhibit excellent potential for wearable applications. Moreover, photocurrent and dark current characteristics above room temperature demonstrate the outstanding functionalities till 523K temperature which is remarkable for flexible photodetectors. The obtained results show the potential of Gallium oxide solar-blind photodetectors at room temperature and high temperatures environments which pave the ways for futuristic smart and flexible sensors.
关键词: photoresponse,Gallium Oxide,Solar-blind photodetectors,detectivity,flexible photodetector,Mica
更新于2025-09-11 14:15:04