- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Ultrasensitive tantalum oxide nano-coated long-period gratings for detection of various biological targets
摘要: In this work we discussed a label-free biosensing application of long-period gratings (LPGs) optimized in refractive index (RI) sensitivity by deposition of thin tantalum oxide (TaOx) overlays. Comparing to other thin film and materials already applied for maximizing the RI sensitivity, TaOx offers good chemical and mechanical stability during its surface functionalization and other biosensing experiments. It was shown theoretically and experimentally that when RI of the overlay is as high as 2 in IR spectral range, for obtaining LPGs ultrasensitive to RI, the overlay’s thickness must be determined with subnanometer precision. In this experiment the TaOx overlays were deposited using Atomic Layer Deposition method that allowed for achieving overlays with exceptionally well-defined thickness and optical properties. The TaOx nano-coated LPGs show RI sensitivity determined for a single resonance exceeding 11,500 nm/RIU in RI range nD=1.335-1.345 RIU, as expected for label-free biosensing applications. Capability for detection of various in size biological targets, i.e., proteins (avidin) and bacteria (Escherichia coli), with TaOx-coated LPGs was verified using biotin and bacteriophage adhesin as recognition elements, respectively. It has been shown that functionalization process, as well as type of recognition elements and target analyte must be taken into consideration when the LPG sensitivity is optimized. In this work optimized approach made possible detection of small in size biological targets such as proteins with sensitivity reaching 10.21 nm/log(ng/ml).
关键词: protein detection,label-free biosensing,optical fiber sensor,tantalum oxide,bacteria detection,long-period grating,atomic layer deposition
更新于2025-11-28 14:23:57
-
Simultaneous Measurement of Refractive Index and Temperature Based on a Peanut-Shape Structure In-Line Fiber Mach–Zehnder Interferometer
摘要: We proposed a peanut-shape structure in-line fiber Mach–Zehnder interferometer (MZI) for simultaneous measurement of refractive index (RI) and temperature. Two kinds of demodulation methods were investigated and compared. The wavelength-related and phase-related character matrices of the in-line fiber MZI were determined for simultaneous measurement of RI and temperature, respectively. For the wavelength-related measurement, the highest temperature and RI sensitivities were 0.0709 nm/°C and ?47.3620 nm/RIU, respectively. The phase-related measurement was with a lower measuring errors compared to the wavelength-related measurement, and the highest temperature and RI sensitivities were ?0.0632rad/°C (0.0764 nm/°C) and 77.0995rad/RIU (?93.2429 nm/RIU), respectively. The minimum measuring errors of temperature and RI were 0.3800 °C and 0.0004 RIU, respectively.
关键词: Mach–Zehnder interferometer,simultaneous measurement of refractive index and temperature,Optical fiber sensor,peanut-shape structure
更新于2025-11-28 14:23:57
-
The impact of ZnO configuration as an external layer on the sensitivity of a bi-layer coated polymer optical fiber probe
摘要: Salinity magnitude changes are a critical factor for determining the chemistry of natural water bodies and biological processes. Label-free refractive index sensors are promising devices for detecting these changes. A polymer optical fiber (POF) sensor modified with cladding treatment and a bi-layer zinc oxide/silver (ZnO/Ag) nanostructure coating to determine sodium chloride concentration changes through refractive index variations in water is experimentally demonstrated. The use of three ZnO nanostructure shapes, nanoparticles and horizontally and vertically oriented nanorods, as an external layer and a broad spectrum light source from the visible (Vis) to the near infrared (NIR) region are investigated to achieve optimum sensitivity. The rms roughness, optical band-gap and zeta potential (ZP) value for the vertically oriented sample are 148 nm, 3.19 eV and 5.96 mV, respectively. In the NIR region the wavelength–intensity sensitivity values of probes coated with ZnO nanoparticles and horizontally and vertically oriented nanorods are 104 nm RIU?1–12 dB RIU?1, 63 nm RIU?1–10 dB RIU?1 and 146 nm RIU?1–22 dB RIU?1, respectively, and in the Vis area the values are 65 nm RIU?1–14 dB RIU?1, 58 nm RIU?1–11 dB RIU?1 and 89 nm RIU?1–23 dB RIU?1, respectively. The maximum amplitude sensitivity is obtained for the probe coated with vertically aligned ZnO nanorods in the NIR area due to the deeper penetration of evanescent waves, a higher surface-volume ratio, better crystallinity, more adhesive interactions with salt molecules, larger surface roughness and higher-order dispersion compared to the other coated ZnO nanostructures.
关键词: sensitivity,salinity,nanorods,refractive index sensors,ZnO/Ag nanostructure,polymer optical fiber,nanoparticles
更新于2025-11-14 15:25:21
-
Lossy Mode Resonance Generation by Graphene Oxide Coatings onto Cladding-Removed Multimode Optical Fiber
摘要: In this work, we have studied the suitability of graphene oxide-based thin films to be not only excellent sensitive coatings but also lossy mode resonance (LMR)-generating materials. Thin films of graphene oxide (GO) and polyethylenimine (PEI) fabricated by means of layer-by-layer assembly were selected in this study. Two optical fiber devices with 8 and 20 bilayers of the LMR-generating coating were fabricated and characterized as refractometers. Both devices show no hysteresis and high sensitivity, improving previously reported values. This research opens very promising and exciting possibilities in the field of optical fiber sensors based on LMR, strategically including specific recognition groups to the device surface to exploit this high sensitivity for monitoring a range of target analytes. The carboxylate functional groups at the edges of the GO sheets should provide excellent attachment sites for the required coupling chemistry to realize such devices.
关键词: optical fiber sensor,thin films,Dip-assisted layer by layer,lossy mode resonance,refractometer,graphene oxide
更新于2025-11-14 15:19:41
-
Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix
摘要: Surface plasmon resonance (SPR) based dopamine sensor is realized using the state-of-art technique of molecular imprinting over an optical fiber substrate. Polypyrrole (PPy) is depicted as an effective polymer for the imprinting of dopamine through a green synthesis approach. Sensitivity of the probe is enhanced by the augmenting effect of surface imprinting of dopamine in polypyrrole over multiwalled carbon nanotubes (MWCNTs). To ensure the permselectivity of the probe towards dopamine molecules, a cation exchange polymer, nafion, is utilized as a membrane over imprinted sites to reduce the interference from anionic analytes like ascorbic acid and uric acid at physiological pH. The probe is characterized for a wide range of dopamine concentration from 0 to 10-5 M in artificial cerebrospinal fluid. Various probe parameters are varied to maximize the sensitivity of the sensor. The sensor possesses 18.9 pM as the limit of detection (LOD) which is lowest of those reported in the literature. The manifestation of sensing probe over an optical fiber along with the improved LOD makes the approach highly advantageous in terms of stability, repeatability, online remote monitoring, fast response, and miniaturization for its in vivo/in vitro applications in clinical sensing of dopamine.
关键词: surface plasmon,dopamine,Optical fiber,polypyrrole,nafion,molecular imprinting,sensor,multiwalled carbon nanotube
更新于2025-10-22 19:40:53
-
An 82-m 9 Gb/s PAM4 FSO-POF-UWOC Convergent System
摘要: With the increasing demands in free-space/underwater environmental monitoring, disaster precaution, and manufacturing industry applications, free-space optical (FSO)-plastic optical fiber (POF)-underwater wireless optical communication (UWOC) convergence is designed to be a promising framework for providing long-haul free-space with underwater links. An 82-m 9 Gb/s four-level pulse amplitude modulation (PAM4) system employing a 405-nm blue-light injection-locked laser diode (LD) is thereby offered and practically demonstrated. Results reveal that a 1.8-GHz 405-nm blue-light injection-locked LD can be effectively applied for a 9 Gb/s PAM4 signal transmission over 50 m FSO link, 30 m graded-index (GI)-POF transportation, and 2 m clear ocean underwater channel. To the authors’ understanding, this study is the first to practically build an 82-m 9 Gb/s PAM4 FSO-POF-UWOC convergent system that effectively constructs a long-haul optical wireless-wired-wireless link using doublet lenses, GI-POF, and optical beam reducer. The performances of the proposed convergent systems are analyzed by bit error rate and non-return-to-zero eye diagram in real-time over an 82-m transport. This framework is the leading one to establish a long-haul FSO-POF-UWOC convergent system with qualified transmission performances. It guides a promising way to facilitate wide applications in the convergence of FSO, POF and UWOC.
关键词: Graded-index plastic optical fiber,Underwater wireless optical communication,Four-level pulse amplitude modulation,Free-space optical
更新于2025-09-23 15:23:52
-
Photonic generation of high-purity 60?GHz millimeter-wave signal requiring only 10?GHz radio frequency local oscillator
摘要: A novel approach to generate 60 GHz millimeter-wave from a 10 GHz radio frequency signal using an integrated nested DD-MZM without optical filter is proposed and demonstrated. The simulation results show that the generated frequency sextupling optical mm-wave has high purity with an OSSR exceeding 29 dB and a RFSSR of 25 dB, which is consistent with the theoretical analysis. Besides, a RoF link model is established to investigate the transmission performance. The eye diagram keeps clear even when the optical mm-wave is transmitted over 60 km and the power penalty is about 0.4 dB after fiber transmission of 50 km.
关键词: Optical fiber communication,Dual-drive Mach–Zehnder modulator (DD-MZM),Optical millimeter-wave generation
更新于2025-09-23 15:23:52
-
Study on sliding-window length based on Rayleigh backscattering spectrum correlation in distributed optical-fiber strain measurement
摘要: A theoretical model is established for estimating the strain measurement error based on the Rayleigh backscattering spectrum correlation in distributed optical fiber strain measurements. Assuming the signal is much larger than the noise, the theoretical model predicts the strain measurement error using noise variance and the defined quality factor Q of the Rayleigh backscattering spectrum. Furthermore, an algorithm based on the quality factor Q is proposed to select an optimized sliding-window. The sliding-window length can be obtained by calculating the threshold value of the quality factor using a theoretical model corresponding to the required strain measurement accuracy. Compared with the traditional method where the sliding-window length is defined by the user based on spatial resolution requirements or an empirical definition, the sliding-window length determined by the algorithm is more reasonable and can be automatically defined, alleviating the requirement for user inputs. To verify the correctness of the theoretical model, two experiments are set up: a self-correlation experiment, that analyzes the effect of the quality factor on the strain measurement accuracy, and a virtual experiment of the noise influence, which analyzes the effect of different noise variances. The experimental results are in good agreement with those of the model.
关键词: Distributed optical fiber strain measurement,Rayleigh backscattering spectrum correlation,Optical frequency domain reflectometer
更新于2025-09-23 15:23:52
-
Investigation of an in-line fiber Mach–Zehnder interferometer based on peanut-shape structure for refractive index sensing
摘要: An in-line fiber Mach–Zehnder interferometer (MZI) for refractive index (RI) sensing was proposed, and the interferometer was fabricated by cascading two peanut-shape structures in the single mode fiber using the commercial fusion splicer. A model of the peanut-shape profile was used to calculate the power distribution of the modes in the device. The RI sensing performances of the peanut-shape structure in-line fiber MZIs with two different arm length (30 and 100 mm) were investigated. As the sensor with a short arm length of 30 mm, the RI sensitivity of ?67.355 nm/RIU was achieved for the RI range of 1.33–1.37. As the sensor with a long arm length of 100 mm, the simultaneous RI and temperature measurement was realized to eliminate the temperature and RI cross sensitivity, and the highest RI and temperature sensitivities of ?67.953 nm/RIU and 0.073 nm/?C were obtained, respectively.
关键词: Simultaneous refractive index and temperature measurement,Optical fiber sensor,Refractive index measurement,Mach–Zehnder interferometer,Peanut-shape structure
更新于2025-09-23 15:23:52
-
Two-Branch Fiber Link for International Clock Networks
摘要: We present our work on realizing two-branch fiber links enabling multiple-partner clock comparisons in Europe. We report in detail on the setup connecting two long-haul links and report for the relative frequency stability and accuracy. We report on a combined uptime of 90% for our dual-branch link during almost 1 month. We finally discuss the combined uncertainty contribution of the ensemble of the link architecture to a clock comparison. We show that the frequency transfer uncertainty is 2 × 10^{-19}.
关键词: two-way noise compensation,phase measurement,ultrastable frequency transfer,Optical fiber links,phase lock loop
更新于2025-09-23 15:23:52