- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2020
- 2019
- 2018
- selective laser melting
- Metal additive manufacturing
- In-situ monitoring
- Laser welding
- Laser melting
- Numerical simulation
- Laser-induced thermal-crack propagation
- Laser separation
- Laminated glass
- tensile properties
- Materials Science and Engineering
- Mechanical Engineering
- Optoelectronic Information Science and Engineering
- Composite Materials and Engineering
- Additive Manufacturing Engineering
- Metal Materials Engineering
- Purdue University
- Missouri University of Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Huazhong University of Science and Technology
- Macquarie University
- Nanjing University of Science and Technology
- ITMO University
- AVIC Chengdu Aircraft Industry (Group) Co. Ltd.
- Perm National Research Polytechnic University
- University of Birjand
-
A statistical learning method for image-based monitoring of the plume signature in laser powder bed fusion
摘要: The industrial breakthrough of metal additive manufacturing processes mainly involves highly regulated sectors, e.g., aerospace and healthcare, where both part and process qualification are of paramount importance. Because of this, there is an increasing interest for in-situ monitoring tools able to detect process defects and unstable states since their onset stage during the process itself. In-situ measured quantities can be regarded as “signatures” of the process behaviour and proxies of the final part quality. This study relies on the idea that the by-products of laser powder bed fusion (LPBF) can be used as process signatures to design and implement statistical monitoring methods. In particular, this paper proposes a methodology to monitor the LPBF process via in-situ infrared (IR) video imaging of the plume formed by material evaporation and heating of the surrounding gas. The aspect of the plume naturally changes from one frame to another following the natural dynamics of the process: this yields a multimodal pattern of the plume descriptors that limits the effectiveness of traditional statistical monitoring techniques. To cope with this, a nonparametric control charting scheme is proposed, called K-chart, which allows adapting the alarm threshold to the dynamically varying patterns of the monitored data. A real case study in LPBF of zinc powder is presented to demonstrate the capability of detecting the onset of unstable conditions in the presence of a material that, despite being particularly interesting for biomedical applications, imposes quality challenges in LPBF because of its low melting and boiling points. A comparison analysis is presented to highlight the benefits provided by the proposed approach against competitor methods.
关键词: Process plume,Metal additive manufacturing,Laser powder bed fusion,Infrared imaging,In-situ monitoring,Zinc
更新于2025-11-28 14:24:20
-
Analysis of microstructure and mechanical strength of lap joints of TZM alloy welded by a fiber laser
摘要: The application of molybdenum alloys to structural components is severely limited due to their poor weldability with serious defects of porosity and joint embrittlement after welding despite their high melting temperature, hot strength and creep resistance. A systematical experimental study has been conducted to explore the potential of laser welding of 0.5 mm-thick Titanium-zirconium-molybdenum (TZM) alloy in a lap welding configuration. Porosity was found to be the most serious problem in the TZM laser lap welding process. Introducing an interface gap of 0.09 mm had the most positive effect in reducing the porosity compared to using helium gas, different shielding gas flow rates, adding alloy element and different heat input rate. With the use of 0.09 mm-interface gap, the porosity of the weld joint was reduced to 3%. The tensile stress of the bead on plate (BOP) welded joint could achieve about 60% that of the base metal. The fracture stress of the lap welded joint obtained by using 0.09 mm-interface gap in tensile-shear test was about 142 MPa. The porosity and embrittlement were responsible for the reduction of the strength and ductility of the welded joint.
关键词: Porosity,Mechanical property,Molybdenum alloy,Laser welding
更新于2025-11-28 14:24:20
-
Effect of pre-existing nuclei on crystallization during laser welding of Zr-based metallic glass
摘要: In this study, experiments are carried out in laser welding of a Zr-based (Zr52.5Ti5Al10Ni14Cu17.9) bulk metallic glass (BMG), pre-existing nuclei nucleus density has significant influence on its crystallization behavior. Based on the classical nucleation/growth theory, it is concluded that a small amount of pre-existing nuclei in a BMG can shift the time-temperature-transformation (TTT) curve from a well-known ‘C-shape’ to a ‘ε-shape.’ This result provides fundamental understanding on why the shape of the TTT curve for a heating process is different from that for a cooling process for the same BMG. Two quality factors were defined as a measure of the effect of pre-existing nucleus density. By integrating the classical nucleation/growth theory with the heat transfer model, the evolution of crystalline phase during laser welding for a BMG with pre-existing nuclei was studied, and the modeling predictions compared favorably with the experimental results.
关键词: Crystallization,Nucleation and growth,Laser processing,Metallic glasses,Amorphous alloys
更新于2025-11-28 14:24:20
-
Influence of processing parameters on the microstructure and tensile property of 85 W-15Ni produced by laser direct deposition
摘要: The plate-like shape 85W-15Ni parts were produced by laser direct deposition technology with different processing parameters (laser power and scanning speed). The influence of processing parameters and their corresponding laser energy density on the microstructural characterization, phase composition and tensile property of 85W-15Ni samples was investigated. The results show that the relative density of samples increased with the laser energy density and the densification trend started to slow as the laser energy density reached 380-400 J/mm3, though the highest density value was obtained with laser energy of 425 J/mm3. With the increase of laser energy density, more disorder and fine W dendrites existed at the bonding region between deposition layers and more W-W grain boundaries formed at the central region of the layer. The 85W-15Ni samples produced with different processing parameters consisted of W and γ-Ni phase. To improve the tensile property, it is necessary to increase the laser energy density to obtain denser structure and reduce the residual pores or gaps. However, the excessive laser energy density resulted in the formation of more W-W grain boundaries that were detrimental to the tensile property. The best tensile properties were obtained at the laser energy density of 395 J/mm3.
关键词: 85W-15Ni,Laser direct deposition,Tensile property,Laser energy density,microstructural characterization
更新于2025-11-28 14:24:20
-
Enhancement of weld strength of laser-welded joints of AA6061-T6 and TZM alloys via novel dual-laser warm laser shock peening
摘要: In this paper, an experimental study is presented on an investigation to improve the weld strength of laser-welded joints via post-processing by warm laser shock peening (wLSP). A dual-laser setup was utilized to simultaneously heat the sample to a prescribed temperature and to perform the wLSP process on the laser-welded joints of AA6061-T6 and TZM alloys. Joints in overlap and bead-on-plate configurations were created by laser welding by a high-power fiber laser and post-processed with wLSP. The tensile tests carried out on wLSP-processed AA6061-T6 samples demonstrate an enhancement in the strength by about 20% over as-welded samples and the ductility of samples processed by wLSP improved by 30% over as-welded samples. The bead-on-plate (BOP) welds of TZM alloy processed with wLSP demonstrated an enhancement in strength by about 30% and the lap welds processed with wLSP demonstrated an increase in the joint strength by 22%. Finite element analysis revealed that the depth and magnitude of compressive stresses imparted by wLSP were greater than room temperature laser shock peening (rtLSP), which contributed to the enhancement of the joint strength for processed samples.
关键词: Al6061,Warm laser shock peening,Strength improvement,Laser welding,TZM
更新于2025-11-28 14:24:20
-
Influence of laser parameters on tensile shear strength of copper welds
摘要: The electrification of the power train in the automotive industry leads to the requirement of electrical connectors with high ampacities. These connectors are often realized using ultrasonic bonding technology. Substitution of ultrasonic welding by laser welding allows an increase of ribbon cross section by a factor of 5 and thus a similar increase of the maximum transferred current. The increased cross section leads to higher loads (at least by a factor of 5) applied to the weld seam during the process. To minimize the heat input, the weld seam strength in shear direction shall be maximized. The influence of different laser parameters on the ultimate tensile shear stress in lap joint configuration is investigated, based on representative specimen geometries (10 × 0.3 mm2). The variable parameters are: laser wavelength (IR around 1050 nm + frequency doubled 515 nm), focal diameters (42–300 μm), different temper conditions of the base material, process parameters (laser power 0.6–4 kW and feed rate 50–800 mm/s), and welding strategies (single pass welding, spatial beam modulation). The material used is Cu-ETP (>99.9% Cu). For all the investigated parameters, the observed failure mode is “fracture in the fusion zone.” The ultimate tensile shear stress for all experiments is around 188 N/mm2 even for parameter changes in the order of one magnitude. This is in contrast to the assumed relation between laser parameters and the mechanical properties. This contrast will be discussed.
关键词: load-carrying capacity,ductile welds,wobbling,fiber laser welding,shear strength
更新于2025-11-28 14:24:20
-
HSS coating with keyholes in penetration produced by laser cladding process
摘要: This paper is devoted to the assurance of higher durability of hard coatings by using irregular method of laser cladding (LC). The purpose of this study was to demonstrate that by producing of keyhole mode LC coatings enables to create functionally graded structure in interface. This can contribute to decrease the gradient of trough-depth residual stresses of the coating-substrate system formed by dissimilar steels. Experimental work was carried out using precise LC system, which consists of industrial robot (KUKA) and 1kW Yb-fiber laser (IPG Laser). Experimental coatings were created on cold work tool steel substrate AISI D2 using high-speed steel (HSS) powder AISI M2. The properties of coatings produced by two different methods have been evaluated in the course of a comparative analysis by examination of morphology of transverse cross-sections, elemental composition, microhardness distribution inside coatings and tribological tests. Results showed that coating with keyhole mode in penetration had lower hardness due to a larger amount of dilution however the smooth transition of properties in the interface was obtained. Despite the significant difference in hardness both coatings demonstrated very similar tribological behaviour.
更新于2025-11-28 14:24:20
-
Densification behavior, microstructure evolution, and tensile properties of selective laser melting additive manufactured TiB <sub/>2</sub> /AlSi10Mg composite
摘要: The fabrication of TiB2/AlSi10Mg composites by selective laser melting (SLM) additive manufacturing has been conducted. The influence of laser processing parameters on the densification behavior, microstructure evolution, and tensile properties of the SLM-processed composites is addressed. With the increase in laser volume energy density, the densification rate increased and reached 99% at a laser speed of 1000 mm/s. Meanwhile, the TiB2 particles underwent a partial melting behavior with the formation of an irregular pattern in the solidified part and complete melting with the smooth surface of the reinforcing particles as the laser volume energy increased. The cellular-dendritic microstructure and the width of the eutectic phase of the as-fabricated composites were significantly refined due to the high cooling rate and complete melting of the reinforcing particles as the nucleation sites using the laser energy density of 117 J/mm3. Therefore, the micro-hardness, ultimate tensile strength, yielding strength, and elongation of the as-fabricated TiB2/AlSi10Mg composites obtained in this process condition were 131.3 HV0.2, 375 MPa, 260 MPa, and 3.1%, respectively, which were significantly higher than those of the unreinforced AlSi10Mg alloy.
关键词: tensile properties,aluminum-based composite,selective laser melting,microstructure evolution
更新于2025-09-23 15:21:01
-
Study on high-efficiency separation of laminated glass by skillfully combining laser-induced thermal-crack propagation and laser thermal melting
摘要: Laminated glass has a wide range of applications, but the cutting process is too cumbersome. In this paper, a novel laser composite separation method was proposed to separate the laminated glass by one time and simplify the cutting process from five steps to two steps for the first time by skillfully combining laser-induced thermal-crack propagation and laser thermal melting. This method generated three laser foci, and each laser focus is acting on one layer of laminated glass. Then, the composite mechanism combining laser-induced thermal-crack propagation for glass layers and laser thermal melting separation for PVB layer was realized to separate entire laminated glass. The experiments of separating laminated glass with thickness of 5 + 0.38 + 5 mm were carried out by laser composite separation successfully, and the separation side wall was very smooth (roughness of glass layer reached 10.24 nm) without any separation defects such as chipping, micro-cracks or subsurface damage. A mathematical model was also established to analyze the separation mechanism.
关键词: Laser melting,Numerical simulation,Laser-induced thermal-crack propagation,Laser separation,Laminated glass
更新于2025-09-23 15:21:01
-
Laser hardening of copper-iron pseudoalloy
摘要: The purpose of the study is to improve the performance characteristics of powder pseudo-alloy materials using surface heat treatment. Such materials have unique properties, for example, self-lubrication under dry friction conditions, high thermal conductivity coefficient, and high electro-erosion resistance. The disadvantage of powder pseudo-alloys is their relatively low strength. The paper considers the method of surface hardening by high-energy treatment - laser radiation. The paper describes the method of experimental research, describes the method of obtaining powder material, its chemical composition, shows the equipment used. The results of studies of the microstructure and microhardness of the surface layer of steel-copper powder pseudo-alloy after laser heat treatment (LHT) of a continuous-wave fiber laser with a maximum power of 1 kW are given, LHT modes are indicated, the influence of LHT parameters on the characteristics of the hardened layer is evaluated. It is revealed that the partial melting region in which melting occurs in the volumes of the fusible component (copper) in the initial structure and contacting segments of steel matrix is formed in the material in addition to the total melting zone. Then the quenching zone from the solid state follows, in which the maximal hardness up to 1000 HV is attained for best samples in the volume of martensite, which is formed in perlite colonies of the initial steel–copper material.
关键词: Steel–copper pseudoalloy,Microhardness,Abrasive wear,Laser heat treatment,Powder metallurgy,Microstructure
更新于2025-09-23 15:19:57