- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Highly Sensitive and Selective Fluorescent Detection of Gossypol Based on BSA-Stabilized Copper Nanoclusters
摘要: In this paper, ?uorescent copper nanoclusters (NCs) are used as a novel probe for the sensitive detection of gossypol for the ?rst time. Based on a ?uorescence quenching mechanism induced by interactions between bovine serum albumin (BSA) and gossypol, ?uorescent BSA-Cu NCs were seen to exhibit a high sensitivity to gossypol in the range of 0.1–100 μM. The detection limit for gossypol is 25 nM at a signal-to-noise ratio of three, which is approximately 35 times lower than the acceptable limit (0.9 μM) de?ned by the US Food and Drug Administration for cottonseed products. Moreover, the proposed method for gossypol displays excellent selectivity over many common interfering species. We also demonstrate the application of the present method to the measurement of several real samples with satisfactory recoveries, and the results agree well with those obtained using the high-performance liquid chromatography (HPLC) method. The method based on Cu NCs offers the followings advantages: simplicity of design, facile preparation of nanomaterials, and low experimental cost.
关键词: probe,?uorescence,copper nanoclusters,gossypol
更新于2025-11-14 17:04:02
-
Peptide Conjugated CuS Nanocomposites for NIR Triggered Ablation of Pseudomonas aeruginosa Biofilm
摘要: The Gram-negative bacteria Pseudomonas aeruginosa is one famous bacterial strain owing to its ability to effectively form biofilms, which is a front-line mechanism of bacterial tolerance. Herein, the near-infrared-induced nanocomposites were one-step prepared by modifying copper sulfide nanoparticle with peptide to effectively eradicate Pseudomonas aeruginosa biofilm through electrostatic interaction, photodynamic effect and photothermal effect. These nanocomposites could rapidly adhere to the surface of bacteria, and irreversible damage the bacterial membrane under near-infrared laser irradiation. Furthermore, the nanocomposites could selectively eliminate bacteria over mammalian cell without distinct toxicity to NIH 3T3 cells. The nanocomposites will exert a far-reaching impact on the future design of biocompatible near-infrared-induced antibacterial agents, exhibiting its potential applications in Gram-negative bacteria and biofilm infections.
关键词: copper sulfide nanoparticles,near-infrared laser,Gram-negative bacterial biofilm,photothermal and photodynamic effect
更新于2025-11-14 17:03:37
-
Ambient surface stability of thin film nanocrystalline Cu <sub/>3</sub> SbSe <sub/>4</sub> and structure-property relationships
摘要: Nanocrystalline materials have a high surface area, and hence may be significantly more reactive than their bulk counterparts under ambient conditions. This may affect device function in unexpected ways. Here, high quality crystalline Cu3SbSe4 nanocrystals are synthesized through a hot injection route, and thin films are deposited through a ligand exchange procedure. The electronic conductivity of the films increases significantly upon exposure to air, up to 80 Ω-1cm-1. This increase in conductivity is correlated to a surface oxidation as observed by XPS. The observed changes in the film upon exposure to ambient conditions are suggested to be critical for understanding the properties of these materials as they are incorporated into devices.
关键词: surface oxidation,earth abundant,copper antimony chalcogenides,hot injection,Thermoelectrics,nanoparticles
更新于2025-11-14 15:19:41
-
Single process CVD growth of hBN/Graphene heterostructures on copper thin films
摘要: In this study, we have successfully grown hBN/graphene heterostructures on copper thin films using chemical vapor deposition in a single process. The first and most surprising result is that graphene grows underneath hBN and adjacent to the Cu film even though it is deposited second. This was determined from cross-sectional TEM analysis and XPS depth profiling, which chemically identified the relative positions of hBN and graphene. The effect of various growth conditions on graphene/hBN heterostructures was also studied. It was found that a pressure of 200 torr and a hydrogen flow rate of 200 sccm (;1 H2/N2) yielded the highest quality of graphene, with full surface coverage occurring after a growth time of 120 min. The resulting graphene films were found to be approximately 6–8 layers thick. The grain size of the nanocrystalline graphene was found to be 15–50 nm varying based on growth conditions.
关键词: XPS depth profiling,copper thin films,TEM analysis,hBN/graphene heterostructures,chemical vapor deposition
更新于2025-11-14 14:32:36
-
Copper sulfide nanoparticles as hole-transporting-material in a fully-inorganic blocking layers n-i-p perovskite solar cells: Application and working insights
摘要: One of the challenges in the field of perovskite solar cells (PSC) is the development of inorganic hole-transporting-materials (HTM) suitable for solution-processed deposition, in order to have cheaper, more stable and scalable devices. Herein, we report the synthesis and characterization of p-type copper sulfide nanoparticles for their application for the first time as a low-cost, fully-inorganic HTM in mesoscopic n-i-p PSC. By employing CuS combined with two different perovskites, CH3NH3PbI3 (MAPbI3) and (FAPbI3)0.78(MAPbBr3)0.14(CsPbI3)0.08 (CsFAMAPbIBr), very high current densities and fill-factors are observed, suggesting an effective hole-extraction happening at the CuS interface. Noticeable, our cells exhibit one of the highest power conversion efficiencies (PCE) in n-i-p configuration employing a sole solution-processed inorganic HTM via non-toxic solvents, leading to 13.47% and 11.85% for MAPbI3 and CsFAMAPbIBr, respectively. As a remark, such PCE values are only limited by a reduced open-circuit voltage around 0.8 V, due to different phenomena occurring at perovkite/CuS interface such as an increased non-radiative recombination, caused by considerable difference in valence band value, and the effect of CuS metallic character. Overall, these findings highlight CuS as an extremely cheap alternative to common organic HTMs and pave the way to new improvements employing this material in full-inorganic blocking layers PSC.
关键词: perovskite solar cells.,Copper sulfide,interfaces,inorganic hole-transporting-material
更新于2025-10-22 19:40:53
-
Spectroscopic and theoretical studies of potassium sodium l-(+)-tartrate tetrahydrate and l-tartaric acid used as precursors for in situ laser-induced deposition of the catalytically active copper microstructures
摘要: In this work we study the influence of l-(+)-КNaC4H4O6 × 4H2O (KNaT) and l-H2C4H4O6 (H2T) on the complexation processes occurring during in situ laser-induced catalytic destruction of the organic components of the aqueous solutions with formation of the unsaturated hydrocarbons. For that purpose, ATR-FTIR, Raman, IR, and NIR spectroscopy as well as quantum chemical calculations were implemented. It was observed that hydration of T2? anion via carboxylate groups is stronger than that via hydroxyl groups. We also established the changes in the spectral characteristics of the absorption bands corresponding to vibrations of T2?, HT?, and H2T, at solid state-liquid and acid-salt transitions, depending on concentration of the solution components and the [OH?]/[H2T] ratio. Finally, it was shown that ethylene is a main product of the catalytic destruction of the copper tartrate complexes.
关键词: IR,Laser-induced copper deposition,DFT calculations,Tartaric acid,ATR-FTIR,Catalysis,NIR,Raman spectroscopy,Sodium potassium tartrate tetrahydrate
更新于2025-10-22 19:40:53
-
Enhanced Oxidation Stability of Transparent Copper Films Using a Hybrid Organic-Inorganic Nucleation Layer
摘要: We report a novel seed layer for the formation of slab-like transparent copper films on glass and plastic substrates, based on a mixed molecular monolayer and an ultra-thin (0.8 nm) aluminium layer both deposited from the vapour phase, which substantially outperforms the best nucleation layer for optically thin copper films reported to date. Using this hybrid layer, the metal percolation threshold is reduced to < 4 nm nominal thickness and the long-term stability of sub-10 nm films towards oxidation in air is comparable to that of silver films of the same thickness fabricated using the best reported seed layer for optically thin silver films to date. The underlying reason for the remarkable effectiveness of this hybrid nucleation is elucidated using a combination of photoelectron spectroscopy, small angle X-ray studies, atomic force microscopy and transmission electron microscopy.
关键词: ultrathin metal film,nucleation,transparent electrode,seed layer,passivation,copper
更新于2025-10-22 19:40:53
-
A reaction-based turn-on fluorescent sensor for the detection of Cu (II) with excellent sensitivity and selectivity: Synthesis, DFT calculations, kinetics and application in real water samples
摘要: A reaction-based turn-on fluorescent chemosensor RhB-Cu, starting from rhodamine B (RhB), for Cu2+ was easily synthesized in two steps. The sensor could selectively detect Cu2+ with a 100-fold fluorescence enhancement among the common metal ions, exhibiting an extremely low detection limit of 4.7 nM. To the best of our knowledge, this was the best record for the detection of Cu2+ with organic fluorescent sensors. There was a 1:1 binding stoichiometry between RhB-Cu and Cu2+ with an association constant of 6.42 × 104 M-1. Noteworthy, it could distinguish Cu2+ from Cu+, which was hard to realize in the previous studies. In addition, the detection mechanism was proposed based on mass spectrometric analysis and density functional theory (DFT) calculations. Kinetic studies were conducted to obtain the activation energy, enthalpy and entropy, so as to elucidate the solvent effect. Interestingly, the kinetic compensation effect (KCE) was uncovered in this work. Finally, RhB-Cu was proved to have the capability to work in real water samples. It would highly contribute to the even better design of fluorescent sensor for Cu2+ in future.
关键词: fluorescent sensor,solvent effect,kinetic compensation effect (KCE),copper,density functional theory (DFT),PET mechanism
更新于2025-10-22 19:38:57
-
Copper’s Role in the Photoluminescence of Ag1?xCuxInS2 Nanocrystals, from Copper-Doped AgInS2 (x ~ 0) to CuInS2 (x = 1)
摘要: A series of Ag1?xCuxInS2 nanocrystals (NCs) spanning from 0 ≤ x ≤ ~1 was synthesized by partial cation exchange to identify copper’s contributions to the electronic structure and spectroscopic properties of these NCs. Discrete mid-gap states appear above the valence band (VB) upon doping AgInS2 NCs with Cu+ (small x). Density functional theory (DFT) calculations confirm that these mid-gap states are associated with the 3d valence orbitals of the Cu+ impurities. With increasing x, these impurity d levels gradually evolve to become the VB edge of CuInS2 NCs, but the highest-occupied orbital's description does not change significantly across the entire range of x. In contrast with this gradual evolution, Ag1?xCuxInS2 NC photoluminescence shifts rapidly with initial additions of Cu+ (small x) but then becomes independent of x beyond x > ~0.20, all the way to CuInS2 (x = 1.00). Data analysis suggests small but detectable hole delocalization in the luminescent excited state of CuInS2 NCs, estimated by Monte Carlo simulations to involve at most about four copper ions. These results provide unique insights into the luminescent excited states of these materials and they reinforce the description of CuInS2 NCs as “heavily copper-doped NCs” in which photogenerated holes are rapidly localized in copper 3d-based orbitals.
关键词: silver indium sulfide,nanocrystal,cation exchange,Copper indium sulfide,copper-doped,photoluminescence
更新于2025-09-23 15:23:52
-
Implementing Inkjet-Printed Transparent Conductive Electrodes in Solution-Processed Organic Electronics
摘要: Through the use of solution-based materials, the field of printed organic electronics has not only made new devices accessible, but also allows the process of manufacture to move toward a high throughput industrial scale. However, while solution-based active layer materials in these systems have been studied quite intensely, the printed electrodes and specifically the transparent conductive anode have only relatively recently been investigated. In this progress report, the use of metal nanoparticles within printed organic electronic devices is highlighted, specifically their use as replacement of the commonly used indium tin oxide transparent conductive electrode within organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). A cross fertilization between the applications is expected since an OPV device is essentially an inversely operated OLED. This report aims to highlight the use of inkjet-printed nanoparticles as cost-effective electrodes for printed optoelectronic applications and discusses methods to improve the conductive and interfacial properties. Finally, in an outlook, the use of these types of metal nanoparticle inks to manipulate light management properties, such as outcoupling, in the device is investigated.
关键词: embedded silver and copper grid,metal nanoparticle ink,inkjet-printed electronics,transparent electrode,solution-processed optoelectronics
更新于2025-09-23 15:23:52