修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

70 条数据
?? 中文(中国)
  • Improve the Oxide/Perovskite Heterojunction Contact for Low Temperature High Efficiency and Stable All-inorganic CsPbI2Br Perovskite Solar Cells

    摘要: Oxide/perovskite heterojunction contact is important for realizing high performance and stable perovskite solar cells (PSCs). However, the development of ZnO/perovskite heterojunction contact is plagued by the poor chemical compatibility at ZnO/organic-inorganic perovskite interface. Nevertheless, the ZnO/inorganic perovskite heterojunction contact exhibits potential applications in all-inorganic PSCs. In this study, all-inorganic CsPbI2Br PSCs based on ZnO/perovskite heterojunction contact have been successfully realized at low temperature process below 150 oC and delivered an excellent power efficiency conversion of 14.78 % with a high open-circuit voltage (Voc) of 1.21 V and a truly extraordinary fill factor (FF) of 81.42 %. Compared to SnO2-based PSCs, the better band alignment between ZnO ETL and perovskite contributed larger built-in potential, resulting in superior electron extraction capability and effective interfacial recombination suppression. The better perovskite film quality and improved interface contact of ETL/perovskite contributed to better air and thermal stability of ZnO-based perovskite devices. These researches have proved the unlimited possibilities for ZnO as ETL in all-inorganic perovskite solar cells.

    关键词: ZnO,low temperature,interface,all-inorganic CsPbI2Br,electron transport layer

    更新于2025-09-12 10:27:22

  • Enhancing the charge extraction and stability of perovskite solar cells using strontium titanate (SrTiO3) electron transport layer

    摘要: Charge transport layers strongly influence the performance of perovskite solar cells (PSCs). To date, compact layers and mesoporous scaffolds of titanium dioxide have emerged as good electron transport layers (ETL), enabling record power conversion efficiencies (PCE). However, these ETLs require sintering above 400 °C, which excludes them from low-temperature applications such as flexible devices and silicon-heterojunction tandems. Furthermore, instability of TiO2 under prolonged exposure to sun light appears to be a critical issue. Here, we present the promising characteristics of low-temperature processed strontium titanate (STO) as an ETL to realize PSCs with 19% PCE. STO is a wide bandgap transparent inorganic perovskite. Compared to other low-temperature processed interlayers, STO reduces the parasitic absorption in the ultraviolet and visible range, improves the electron transport and greatly increases the stability of the devices, retaining ~80% of their initial efficiency after 1000 hours of constant white light illumination.

    关键词: perovskite solar cells,stability,low-temperature processing,strontium titanate,electron transport layer

    更新于2025-09-12 10:27:22

  • Passivated metal oxide n-type contacts for efficient and stable organic solar cells

    摘要: Suppressing trap states and localized electronic states in the forbidden gap of semiconductors as either active layers or contacts, is critical to the enhancement of optoelectronic device performance, such as solar cell, ultra-fast photodetectors, field-effect transistors as well as other optoelectronic applications. In this study, we demonstrate Lewis bases-passivated metal oxide n-type contacts can effectively improve the performance of organic solar cells (OSCs). OSCs with triethanolamine-passivated ZnO show two orders of magnitude lower trap density, and thus higher electron mobility and three times longer charge carrier recombination lifetime, relative to the devices based on as-cast ZnO. Passivated ZnO universally improves power conversion efficiency (PCE) of OSCs based on varied active layers. P3HT: PC71BM based solar cells with passivated-ZnO yield 86% PCE enhancement relative to the control devices based on as-cast ZnO, and PM6: Y6 based devices with passivated-ZnO exhibit PCEs up to 15.61%. Furthermore, light stability of OSCs with passivated-ZnO has also been improved along with enhanced device efficiency. Lewis base is also efficient to passivate SnOX contact for solar cells. This study highlights the importance of defect passivation on contact layers for improvement of the efficiency and stability of OSCs, and also provides one facile and effective passivation strategy.

    关键词: defect passivation,electron transport layer,organic solar cell,tin oxide,zinc oxide

    更新于2025-09-12 10:27:22

  • Impact of electron transport layer material on the performance of CH3NH3PbBr3 perovskite-based photodetectors

    摘要: In the present article, the electron transport materials titanium oxide (TiO2), bathocuproine (BCP) and phenyl-C61-butyric acid methyl ester (PCBM) were synthesized and investigated for the application in methylammonium lead bromide (CH3NH3PbBr3) perovskite photodetectors. Results show that device based on TiO2 electron transport layer (ETL) shows higher photocurrent, responsivity and detectivity as compared to the devices based on BCP and PCBM ETL. However, ideality factor, charge carrier mobility, trap width and trap density were found to be comparable for the devices composed of BCP ETL and TiO2 ETL. The TiO2 ETL might help in the passivation of interface traps, form good quality intimate interfaces and offers more appropriate energy levels for effective blocking of holes and efficient extraction of electrons, resulting in the improved device performance. Through impedance spectroscopy analysis, the superior performance of the device with TiO2 ETL can be attributed to the better contact selectivity and high recombination resistance.

    关键词: PCBM,electron transport layer,BCP,TiO2,perovskite photodetectors,CH3NH3PbBr3

    更新于2025-09-12 10:27:22

  • Boosting Performance of Perovskite Solar Cells with Graphene quantum dots decorated SnO2 Electron Transport Layers

    摘要: In this work, Graphene quantum dots (GQDs) was decorated on the SnO2 electron transport layers (ETLs) to boost the performance of perovskite solar cells (PSCs). The power conversion efficiency (PCE) of 21.1% was acquired with the combination of SnO2 and GQDs. Compared with the SnO2-only ETL devices (18.6%), the PCE of SnO2/GQDs based devices is greatly enhanced in PCE by the value of 13.4% as well as in the stability. Investigation reveals that with the combination of SnO2 and GQDs, the open circuit voltage (VOC) and the short circuit current density (JSC) could increase. Various advanced optical and electrical characterizations were carried out to explore the action mechanism of GQDs. The experimental results convinced that the introduction of GQDs leads to the better carrier transportation and extraction by increasing the electronic coupling and matching the energy levels between the perovskite and SnO2 ETL. Also, the perovskite film quality deposited on the GQDs decorated SnO2 ETL is better compared with the SnO2 only. Furthermore, the device stability based on the GQDs modified SnO2 is evidently improved contrast to the SnO2-only device. Its performance kept above 80% of initial value after 720 h storage.

    关键词: electron transport layer,graphene quantum dots,SnO2,perovskite solar cells

    更新于2025-09-12 10:27:22

  • Improved Efficiency of Perovskite Solar Cells Using a Nitrogen Doped Graphene Oxide Treated Tin Oxide Layer

    摘要: Tin oxide (SnO2) is widely adopted as an electron transport layer in perovskite solar cells (PeSCs) because it has high electron mobility, excellent charge selective behavior owing to a large band gap of 3.76 eV, and low temperature processibility. In order to achieve highly efficient SnO2-based PeSCs it is necessary to control the oxygen vacancies in the SnO2 layer, since the electrical and optical properties vary depending on the oxidation state of Sn. This study demonstrates that the performance of PeSCs may be improved by using nitrogen doped graphene oxide (NGO) as an oxidizing agent for SnO2. Since NGO changes the oxidation state of the Sn in SnO2 from Sn2+ to Sn4+, the oxygen vacancies in SnO2 can be reduced using NGO. Multiple devices are fabricated and various techniques are used to assess their performance, including X-ray photoelectron spectroscopy, dark current analysis, and the dependence of the open circuit voltage on light intensity. Compared with the average power conversion efficiency (PCE) of control devices, PeSCs with SnO2:NGO composite layers exhibit greater PCE with less deviation. Therefore, introduction of NGO in a SnO2 layer can be regarded as an effective method of controlling the oxidation state of SnO2 to improve the performance of PeSCs.

    关键词: passivation,electron transport layer,perovskite solar cells,nitrogen doped graphene oxide,defects

    更新于2025-09-12 10:27:22

  • Reducing Photovoltage Loss in Inverted Perovskite Solar Cells by Quantum Dots Alloying Modification at Cathode Contact

    摘要: The tremendous passion for inverted planar heterojunction perovskite solar cells (PSCs) is originated from their great tendency in the Roll-to-Roll process compatible fabrication and huge potential for integration into tandem solar cells. But the device efficiency is still lower than regular structured PSCs. Engineering of the cathode interface to efficiently control and reduce VOC loss light a lamp for increasing electrochemical properties and boosting overall performance. In this work, a simple interfacial modification strategy was developed by introducing a hybrid ligands interfacial layer to reduce VOC loss in PSCs with inverted planar structure. Heavily washed QDs was used as a neutral charged intermedia to enable alloying reaction to transfer ligands without damage perovskite. A band bending immediately generated on top surface of perovskite film after QDs modification, which was directly convinced by UPS and KPFM. This contributed to ~50 mV reduced VOC loss, leading to a VOC of 1.15 V and a PCE of 20.6% in inverted PSCs. Meanwhile, enhanced stability achieved for these devices after QDs modification, in which PCE keeping > 90% of initial value after 1000 hours' storage.

    关键词: inverted planar heterojunction perovskite solar cells,perovskite quantum dots,photovoltage,electron transport layer,passivation

    更新于2025-09-12 10:27:22

  • A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells; 低温 TiO2/SnO2 双电子传输层的光电性能及其在 钙钛矿电池中的应用;

    摘要: Conventional titanium oxide (TiO2) as an electron transport layer (ETL) in hybrid organic-inorganic perovskite solar cells (PSCs) requires a sintering process at a high temperature to crystalize, which is not suitable for flexible PSCs and tandem solar cells with their low-temperature-processed bottom cell. Here, we introduce a low-temperature solution method to deposit a TiO2/tin oxide (SnO2) bilayer towards an efficient ETL. From the systematic measurements of optical and electronic properties, we demonstrate that the TiO2/SnO2 ETL has an enhanced charge extraction ability and a suppressed carrier recombination at the ETL/perovskite interface, both of which are beneficial to photo-generated carrier separation and transport. As a result, PSCs with TiO2/SnO2 bilayer ETLs present higher photovoltaic performance of the baseline cells compared with their TiO2 and SnO2 single-layer ETL counterparts. The champion PSC has a power conversion efficiency (PCE) of 19.11% with an open-circuit voltage (Voc) of 1.15 V, a short-circuit current density (Jsc) of 22.77 mA cm?2, and a fill factor (FF) of 72.38%. Additionally, due to the suitable band alignment of the TiO2/SnO2 ETL in the device, a high Voc of 1.18 V is achieved. It has been proven that the TiO2/SnO2 bilayer is a promising alternative ETL for high efficiency PSCs.

    关键词: electron transport layer,low temperature,perovskite solar cell,energy band alignment,TiO2/SnO2

    更新于2025-09-12 10:27:22

  • A study on the material characteristics of low temperature cured SnO2 films for perovskite solar cells under high humidity

    摘要: Electron transport layer (ETL) plays a crucial role on the fabrication of perovskite solar cells (PSCs) by separating and transporting the charge carriers. Titanium dioxide (TiO2) has been extensively used as an ETL in PSCs; however, high temperature thermal annealing requirement impedes its integration with flexible polymer substrates for roll to roll fabrication. Herein, we have demonstrated that SnO2 is a potential ETL candidate when fabricated at low temperature (180 °C) using spin coating technique. XRD and XPS analysis revealed synthesis of rutile SnO2 tetragonal phase. TEM micrographs with SAED pattern proved formation of nanosized (3 to 4 nm) crystals of SnO2 with polycrystalline phase. FESEM analysis revealed the SnO2 nanocrystals fully covered the FTO surface and elemental mapping confirmed the uniformly distribution tin (Sn) and (O) elements throughout the surface. In addition to this, transmission analysis confirmed that SnO2 film exhibited good transmission property. PSCs were fabricated in ambient air (relative humidity ranges from 55% to 65%) with concentrated SnO2 colloidal solution and diluted SnO2 with different concentrations (1:1 v/v, 1:2 v/v, 1:4 v/v and 1:6 v/v). It was found that 1:4 v/v based diluted colloidal solution of SnO2 in DI water film exhibited the highest PSC performance of 8.51% in ambient conditions. Thus, low temperature solution processed SnO2 is an efficient ETL and well-suited for low cost automated fabrication of PSCs at large scale.

    关键词: Perovskite solar cells,SnO2,Low temperature,High humidity,Electron transport layer

    更新于2025-09-12 10:27:22

  • Phosphate-passivated SnO2 Electron Transport Layer for High Performance Perovskite Solar Cells

    摘要: Tin oxide (SnO2) is widely used in perovskite solar cells (PSCs) as an electron transport layer (ETL) material. However, its high surface trap density has already become a strong factor of limiting PSC development. In this work, phosphoric acid is adopted to eliminate the SnO2 surface dangling bonds to improve electron collection efficiency. The phosphorus mainly exists at the boundaries in the form of chained phosphate groups, bonding with which more than 47.9% of Sn dangling bonds are eliminated. The reduction of surface trap states depresses the electron transport barriers, thus the electron mobility increases about 3 times when the concentration of phosphoric acid is optimized with 7.4 at% in the SnO2 precursor. Furthermore, the stability of the perovskite layer deposited on the phosphate-passivated SnO2 (P-SnO2) ETL is gradually improved with the increase of the concentration. Due to the higher electron collection efficiency, the P-SnO2 ETLs can dramatically promote the power conversion efficiency (PCE) of the PSCs. As a result, the champion PSC has a PCE of 21.02%. Therefore, it has been proved that this simple method is efficiently to improve the quality of ETL for high performance PSCs.

    关键词: electron transport layer,phosphate passivation,tin oxide,perovskite solar cell,electron collection efficiency

    更新于2025-09-11 14:15:04