修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

15 条数据
?? 中文(中国)
  • MSOT/CT/MR imaging Guided and hypoxia Maneuvered Oxygen self-sufficiency radiotherapy based on One-pot MnO2-mSiO2 @ Au nanoparticle

    摘要: Radiotherapy (RT) is one of the most widely applied treatments for cancer therapy in the clinic. Herein, we constructed an innovative multifunctional nanotheranostic MnO2-mSiO2@Au-HA nanoparticles (MAHNPs) based on one-pot MnO2-mSiO2 nanohybrids (MNHs) and gold nanoparticles (AuNPs) for multispectral optoacoustic tomography (MSOT)/ computed tomography (CT) and magnetic resonance (MR) imaging guided hypoxia-maneuvered radiotherapy. The MNHs were prepared by a facile one-pot approach which avoided the leakage of MnO2 nanoparticles as well as increased the efficiency on preparation. The Mn2+ ions could trigger the breakdown of endogenous H2O2 to generate O2 to convert the hypoxic tumor micro-environment (TME), thus enhancing radiotherapy by self-sufficiency oxygen. In addition, hyaluronic acid (HA) was employed to modify the surface of MnO2-mSiO2@Au nanoparticles to improve biocompatibility and cellular uptake. The well-designed nanoparticles could perform remarkable photothermal therapy (PTT) and hypoxia-maneuvered radiotherapy (RT) simultaneously as well as MSOT/CT/MR imaging. In vivo studies showed that MAHNPs achieved almost entirely suppression of tumor growth without observable recurrence, which raised new possibilities for clinical nanotheranostics with multimodal diagnostic and therapeutic coalescent design.

    关键词: photothermal therapy (PTT),gold nanoparticles,nanotheranostics,MSOT/CT/MR imaging,hypoxia-maneuvered radiotherapy,MnO2-mSiO2 nanohybrids

    更新于2025-11-19 16:56:35

  • Photosensitizer–conjugated Cu-In-S heterostructured nanorods for cancer targeted photothermal/photodynamic synergistic therapy

    摘要: Photo-activated therapy is a non-invasive and promising medical technology for the treatment of cancers. Herein, we present Ce6-HA-CIS phototherapeutic nanohybrids composed of Cu-In-S (CIS) heterostructured nanorod (HS-rod), chlorin e6 (Ce6), and hyaluronic acid (HA) for the use in targeted photodynamic/photothermal therapy (PDT/PTT). In the Ce6-HA-CIS nanohybrids, the CIS HS-rod was investigated as a PTT agent to convert light into thermal energy, with Ce6 acting as a PDT agent to generate singlet oxygen (1O2). HA encapsulated the surface of the CIS HS-rod and aided the hydrophobic CIS HS-rod in achieving aqueous solubility. HA also acts as a tumor-specific targeting vector of cancer cells bearing the cluster determinant 44 receptor. Under light irradiation, the fabricated Ce6-HA-CIS nanohybrids exhibited high photothermal conversion efficiency, good photo-stability, and satisfactory photodynamic activity. In vitro and in vivo experiments demonstrated that Ce6-HA-CIS showed low cytotoxicity and synergistic photodynamic and photothermal cancer cell killing effects as compared to PTT or PDT agents alone. Therefore, these phototherapeutic nanohybrids may enhance cancer therapy in future clinical applications.

    关键词: Cu-In-S,Nanohybrids,Hyaluronic acid,Photodynamic therapy,Photothermal therapy

    更新于2025-11-14 17:04:02

  • Scaling Relations of Plasmon Resonance Peak in Au@Fe3O4 Core-Shell Nanohybrids Structure

    摘要: In this paper, we study the absorption efficiency spectra of Au nanoparticles enveloped with Fe3O4 nanoshell by applying the discrete dipole approximation method. Three kinds of Au@Fe3O4 core-shell nanohybrids (NHs) structure, including the same core with different shell thickness, the same outer shell with different core radius, and the same size of total radius, have been discussed in detail. The simulation results show that the square of localized surface plasmon resonance (LSPR) peak wavelength of NHs is linearly proportional with the volume fraction of the shell, regardless of the outer shell material properties. Compared to the plasmon resonance peak of the Au nanoparticles, the LSPR shift of the NHs is dependent on both the total particles size and the outer Fe3O4 shell thickness. Our calculation results would provide some key guidances to design the structure variables of NHs for a broad range of plasmon applications.

    关键词: Nanohybrids,Discrete dipole approximation,Absorption efficiency

    更新于2025-09-23 15:23:52

  • Pd nanoparticle-decorated hydroxy boron nitride nanosheets as a novel drug carrier for chemo-photothermal therapy

    摘要: A multi-stimuli responsive nanoagent, hydroxy boron nitride nanosheets and Pd nanohybrids (Pd@OH-BNNS), was studied. The well-dispersed hydroxy boron nitride nanosheets were prepared via a facile thermal substitution approach. Pd@OH-BNNS was endowed with a photothermal property after in situ formation of Pd nanoparticles on the surface of the nanosheets. Pd@OH-BNNS as a drug delivery carrier exhibited high loading capability for the anticancer drug doxorubicin. The release of doxorubicin from the nanohybrids was triggered by a decrease in pH, and increases in glutathione concentration and near-infrared irradiation. The faster release behavior of the nanohybrids under near-infrared irradiation was confirmed by a cellular uptake study. In addition, local hyperthermia was verified using an imaging test and an infrared thermal camera. Tumor growth was remarkably inhibited in mice after two weeks of treatment with Pd@OH-BNNS/doxorubicin injection, demonstrating the high efficacy of combining chemotherapy and photothermal therapy. The Pd@OH-BNNS as a drug delivery system exhibited good stability, low cytotoxicity and multi-stimuli responsiveness.

    关键词: photothermal therapy,Pd nanoparticles,drug delivery system,hydroxy boron nitride,nanohybrids

    更新于2025-09-23 15:23:52

  • Biomass-derived carbon boosted catalytic properties of tungsten-based nanohybrids for accelerating the triiodide reduction in dye-sensitized solar cells

    摘要: Manganese tungstate (MWO), zinc tungstate (ZWO), and copper tungstate (CWO) embedded biomass-derived carbon (MWO-C, ZWO-C, CWO-C) was synthesized by hydrothermal treatment and investigated as counter electrode (CE) catalyst to test electrochemical activity. Biomass-derived carbon was used as the shape controlling agent, which changed the morphology of MWO from spherical to spindle-like. Owing to the synergistic effect between tungsten-based bimetal oxides and biomass-derived carbon, the MWO-C, ZWO-C, and CWO-C catalysts exhibited enhanced electrochemical performance in dye-sensitized solar cells (DSSCs) system. The MWO-C, ZWO-C and CWO-C catalysts in DSSCs showed outstanding power conversion efficiency (PCE) of 7.33%, 7.61%, and 6.52%, respectively, as compared with 7.04% for Pt based devices. Biomass-derived carbon improves the catalytic properties of tungsten-based nanohybrids. The results showed that biomass-derived carbon-enhanced inorganic compound as CE catalysts are promising alternatives to Pt-based CE catalysts for energy conversion devices.

    关键词: Triiodide reduction reaction,Counter electrode catalyst,Biomass-derived carbon,Tungsten-based nanohybrids,Dye-sensitized solar cells

    更新于2025-09-23 15:21:01

  • Hybrid of quantum dots for interfacial tension reduction and reservoir alteration wettability for enhanced oil recovery (EOR)

    摘要: Nanoparticle stabilized emulsions in enhanced oil recovery are more attractive and practical than conventional emulsions which stabilized by colloidal particles and different surfactants due to their advantages and special characteristics such as high stability in harsh condition, move long distance in reservoirs without high retention due to small size of nanoparticles. Only one third of original oil in place (OIP) is usually produced and two third of oil in place will be trapped to reservoir rockthus suitable chemical enhanced oil recovery (C-EOR) methods should be used. In this research, we have suggested a novel, economical and commercial method for synthesis N-doped graphene quantum dots (N-GQDs)/MoS2 quantum dots (MQDs) nanohybrids for preparing different percentage of Nanoemulsions which can reduce alterfacial tension significantly so it can used for Enhanced Oil Recovery (EOR) application. MoO3 material was used as a base of MQDs. MQDs was synthesized via exfoliation of MoS2 nanoparticles by Butyl lithium under N2 atmosphere condition. N-GQDs were synthesized by citric acid and urea materials via hydrothermal method. GQDs/MQDs were prepared via a simple sol-gel method for 5 h string. Synthetic materials were characterized with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV–visible absorption, Scanning Microscopic Electron (SEM), EDX profile and mapping, Transmission electron microscopy (TEM), High Resolution Transmission electron microscopy (HRTEM) and differential scanning calorimetry (DSC). Then, emulsions were prepared with two different cationic and anionic surfactants and the stability and morphology of emulsion droplets were investigated in condition close to reservoir environment. Our results show that 10% GQDs/MQDs in cationic surfactant and 50% GQDs/MQDs in anionic surfactant have good stability and very small and fine emulsion droplets in simulated reservoir conditions in laboratory. The Interfacial Tension (IFT) measurement shows N70% improvement which indicates the high ability of these nanohybrids in reducing the surface tension than previous nanohybrids. Contact angle values show that these nanohybrids can alter the wettability of reservoir rock from oil-wet to water-wet so the trapped oil in the porous region of rock can be easily extracted in the presence of a layer of these nanohybrids. Furthermore, according to the results of altering the density and viscosity of nanohybrids, these are not as limiting parameters and only about 1% increasing observed for density and viscosity, respectively. Coreflooding test revealed the high oil recovery efficiency (22%) at very low nanofluid concentration (0.01 wt%).

    关键词: Molybdenum disulfide quantum dots,Graphene quantum dots,Nanohybrids emulsion,Enhanced oil recovery (EOR),Quantum dot hybrids,Rock reservoir alteration wettability

    更新于2025-09-23 15:21:01

  • Plasma-processed CoSn/RGO nanocomposite: A low-cost and sustainable counter electrode for dye-sensitized solar cells

    摘要: The high cost of state-of-the-art Pt counter electrodes (CEs) hinders the large-scale applications of dye-sensitized solar cells (DSCs). The development of Pt-free catalysts while maintaining state-of-the-art catalytic activity for CE materials is one mean to reduce costs. Here, CoxSn1-x/reduced graphene oxide (RGO) (0 ≤ x ≤ 1) nanohybrids were synthesized and employed as inexpensive, stable, and earth-abundant CEs in DSCs. The synthesis was performed through the plasma-assisted reduction of the oxygen functional groups of the graphene oxide along with the immobilization of bimetallic nanoparticles (NPs) on the surface of RGO. The optimization of the composition of the alloy NPs for the highest e?ciency of DSC yields the Co0.9Sn0.1/RGO nanocomposite. The highest device performance correlates well with the experimentally obtained lowest charge transfer resistance in conjunction with the highest electrocatalytic activity of the Co0.9Sn0.1/RGO CE. The DSC employed the synthesized CE showed good stability over long term operation. Both the developed CoSn/RGO nanohybrids and the strategy used for their synthesis are cost-e?ective. Our results provide economically implementable and green nanotechnology for e?cient and stable DSCs required for commercialization.

    关键词: Plasma reduction,Bimetalic alloy CoxSn1-x,Nanohybrids,Reduced graphene oxide,Counter electrode,Dye-sensitized solar cells

    更新于2025-09-23 15:19:57

  • Janus Magnetica??Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy

    摘要: Progress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto-plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic nanoheaters whose on-site delivery can be improved by magnetic targeting, is proposed. Single and combined magneto- and photo-thermal heating properties of Janus nanoparticles render them as compelling heating elements, depending on the nanoparticle dose, magnetic lobe size, and milieu conditions. In cancer cells, a much more effective effect is observed for photothermia compared to magnetic hyperthermia, while combination of the two modalities into a magneto-photo-thermal treatment results in a synergistic cytotoxic effect in vitro. The high potential of the Janus nanoparticles for magnetic guiding confirms them to be excellent nanostructures for in vivo magnetically enhanced photothermal therapy, leading to efficient tumor growth inhibition.

    关键词: magnetic-plasmonic nanohybrids,magneto-photothermia,thermal tumor therapies,nanoheat,photothermal therapy,magnetically-guided nanoparticles

    更新于2025-09-23 15:19:57

  • Hybrid quantum dot-based theranostic nanomedicines for tumor-targeted drug delivery and cancer imaging

    摘要: Quantum dots (QDs) are considered one of the most efficient tools used in theranostic applications for diagnosis and therapy due to their unique physiochemical characteristics. QDs are semiconductor crystals in the nano-scale range of 2–10 nm which exhibit unique photoluminescence characteristics as well as electronic properties such as tunable emission from visible to near infrared wavelengths and superior light stability. QDs possess strong photoluminescence with high molar extinction coefficient values, which make them the best candidates for cell labeling and detection of cancer biomarkers. QDs are characterized by symmetric narrow-emission spectra and broad-absorption spectra. However, some fears have been raised regarding the toxicity of QDs, especially Cd-containing QDs, due to the release of Cd ions and the generation of reactive oxygen species. Therefore, strategies have been developed to reduce their toxicity and enhance their biocompatibility through hybridization with other moieties such as polymers, proteins, polysaccharides or lipids, offering efficient tumor targeting in addition to inhibiting their release into the systemic circulation. This article discusses QD-based nanohybrids for delivery of anticancer drugs in combination with cancer imaging.

    关键词: lipids,proteins,nanohybrids,tumor targeting,inorganic nanoparticles,polymers,cancer theranostics,quantum dots,polysaccharides,drug delivery

    更新于2025-09-19 17:15:36

  • Synergistical Use of Electrostatic and Hydrophobic Interactions for the Synthesis of a New Class of Multifunctional Nanohybrids: Plasmonic Magneto-Liposomes

    摘要: By carefully controlling the electrostatic interactions between cationic liposomes, which already incorporate magnetic nanoparticles in the bilayers, and anionic gold nanoparticles, a new class of versatile multifunctional nanohybrids (plasmonic magneto-liposomes) that could have a major impact in drug delivery and controlled release applications has been synthesized. The experimental results confirmed the successful synthesis of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) and polyethylene glycol functionalized (PEGylated) gold nanoparticles (AuNPs). The SPIONs were incorporated in the liposomal lipidic bilayers, thus promoting the formation of cationic magnetoliposomes. Different concentrations of SPIONs were loaded in the membrane. The cationic magnetoliposomes were decorated with anionic PEGylated gold nanoparticles using electrostatic interactions. The successful incorporation of SPIONs together with the modifications they generate in the bilayer were analyzed using Raman spectroscopy. The plasmonic properties of the multifunctional nanohybrids were investigated using UV-Vis absorption and (surface-enhanced) Raman spectroscopy. Their hyperthermic properties were recorded at different frequencies and magnetic field intensities. After the synthesis, the nanosystems were extensively characterized in order to properly evaluate their potential use in drug delivery applications and controlled release as a result of the interaction with an external stimulus, such as an NIR laser or alternating magnetic field.

    关键词: superparamagnetic nanoparticles,hyperthermia,multifunctional nanohybrids,gold nanoparticles,magneto-liposomes

    更新于2025-09-16 10:30:52