- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Targeting fluorescent nanodiamonds to vascular endothelial growth factor receptors in tumor
摘要: The increased expression of vascular endothelial growth factor (VEGF) and its receptors is associated with angiogenesis in a growing tumor, presenting potential targets for tumor-selective imaging by way of targeted tracers. Though fluorescent tracers are used for targeted in vivo imaging, the lack of photostability and biocompatibility of many current fluorophores hinder their use in several applications involving long-term, continuous imaging. To address these problems, fluorescent nanodiamonds (FNDs), which exhibit infinite photostability and excellent biocompatibility, were explored as fluorophores in tracers for targeting VEGF receptors in growing tumors. To explore FND utility for imaging tumor VEGF receptors, we used click-chemistry to conjugate multiple copies of an engineered single-chain version of VEGF site-specifically derivatized with trans-cyclooctene (scVEGF-TCO) to 140 nm FND. The resulting targeting conjugates, FND-scVEGF, were then tested for functional activity of the scVEGF moieties through biochemical and tissue culture experiments and for selective tumor uptake in Balb/c mice with induced 4T1 carcinoma. We found that FND-scVEGF conjugates retain high affinity to VEGF receptors in cell culture experiments and observed preferential accumulation of FND-scVEGF in tumors relative to untargeted FND. Microspectroscopy provided unambiguous determination of FND within tissue by way of the unique spectral shape of nitrogen-vacancy induced fluorescence. These results validate and invite the use of targeted FND for diagnostic imaging and encourage further optimization of FND for fluorescence brightness.
关键词: Vascular Endothelial Growth Factor,Oncology,Targeted Fluorescence Imaging,Nanodiamond,Angiogenesis
更新于2025-11-21 11:24:58
-
Perylenequinone-based “turn on” fluorescent probe for hydrogen sulfide with a high sensitivity in living cells
摘要: Hydrogen sulfide (H2S) is a kind of gaseous signal molecule in many physiological processes. In order to detect H2S, a novel “turn on” fluorescent probe 6,12-dihydroxyperylene-1,7-dione (DPD) was designed and synthesized. The probe DPD is fluorescence silence, while the addition of H2S induces an obvious green fluorescence with an obvious color change from dark blue to yellow-green. The probe shows excellent selectivity, fast response (2.5 minutes) and linear curve (0-90 μM) in wide effective pH range (4-10). Competition experiments are also revealed in corresponding studies and the detection limit is 3.6 μM. The response mechanism is proved to be the reduction of the probe by H2S, which is confirmed by 1H NMR. Furthermore, through the fluorescence turn-on signal toward H2S in Hela cells, probe DPD was successfully applied to monitor H2S in living Hela cells.
关键词: hydrogen sulfide,probe,fluorescence imaging,cell imaging,perylenequinone
更新于2025-11-21 11:08:12
-
On-off-on relay fluorescence recognition of ferric and fluoride ions based on indicator displacement in living cells
摘要: A new boronic acid derivative functionalized with a 4-(3-(4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-1,2,4-oxadiazol-5-yl)phenyl (IOP) moiety was synthesized for use as a sequential “on-off-on”-type relay fluorescence probe for Fe3+ ions and F? ions with high selectivity and sensitivity under physiological conditions. The introduction of Fe3+ to IOP boronic acid (IOPBA) formed an Fe3+-IOPBA complex, which led to quenching of the blue fluorescence intensity at 458 nm. The lowest-energy conformation of IOPBA was theoretically predicted to adopt an extended structure, and the Fe3+ ion in the Fe3+-IOPBA complex was coordinated to two phenyl groups to form a p-complex. Upon addition of F? to the Fe3+-IOPBA complex, the original fluorescence was recovered due to formation of [FeF6]3?, resulting in “on-off-on”-type sensor behavior. IOPBA showed high selectivity towards Fe3+ among other cations. Moreover, the Fe3+-IOPBA complex showed specific selectivity towards F?, with other cations and anions not interfering with detection. Both sensing processes showed 1:1 stoichiometry with binding constants of 6.87 × 106 and 4.49 × 106 mol–1 L for Fe3+ with IOPBA and F? with Fe3+-IOPBA, respectively. The limits of detection for Fe3+ and F? were 10 and 1 nM, respectively. The proposed method was successfully applied in real water samples. Furthermore, the probe had low cytotoxicity and was successfully used as a bioimaging reagent to detect intracellular Fe3+ and F? in living HeLa cells.
关键词: Fluorescence imaging,On-off-on sensor,Probe for Fe3+ ions and F? ions,Living HeLa cells,Boronic acid derivative
更新于2025-11-21 11:08:12
-
A red fluorescent BODIPY probe for iridium (III) ion and its application in living cells
摘要: A new red fluorescent probe 1 based on BODIPY skeleton has been successfully synthesized through introduction of 2-(thiophen-2-yl) quinoline moiety at meso- and 3-position, which exhibits excellent optical performance, including high fluorescence quantum yield, large pseudo Stokes’ shift as well as high selectivity and sensitivity towards iridium (III) ion in aqueous solution and in living cells.
关键词: iridium (III) ion probe,fluorescence imaging,BODIPY probe
更新于2025-11-21 11:08:12
-
A red-emitting fluorescent probe with large Stokes shift for real-time tracking of cysteine over glutathione and homocysteine in living cells
摘要: Fluorescent probes with high quality for highly selective detection of cysteine (Cys) are still urgently in demand because of the indispensable roles Cys plays in the biological systems. Herein, a red-emitting fluorescent probe CP was developed for the highly selective detection of Cys over glutathione (GSH) and homocysteine (Hcy) by incorporating the recognition unit into the 2-(2-(4-hydroxystyryl)-6-methyl-4H-pyran-4-ylidene) malononitrile (P-OH) fluorophore which is characterized by red emission, noteworthy Stokes shift, and appreciable photostability. Basically, CP demonstrated appreciable sensing performance toward Cys including short response time of 4 min, high sensitivity with approximately 147-fold emission enhancement, low detection limit of 41.696 nM, and good selectivity both in the solution and living cells, indicating its promising potential of visualizing Cys in biological systems.
关键词: Large Stokes shift,Fluorescence imaging,Cysteine detection,Fluorescent probe
更新于2025-11-19 16:56:35
-
A novel fluorescent nanosensor based on small-sized conjugated polyelectrolyte dots for ultrasensitive detection of phytic acid
摘要: A novel nanosensor is developed for selective and highly sensitive detection of phytic acid (PA) based on small-sized conjugated polyelectrolyte dots (Pdots) fabricated from a new conjugated polymer (P1) by a modified reprecipitation method. P1 featuring a π-delocalized backbone bearing meta-substituted pyridyl groups can be endowed with enhanced flexibility and hence is beneficial for the synthesis of ultrasmall Pdots (i.e. Pdot-1, ~3.8 nm in average diameter) as well as for the binding of Fe3+, thus leading to the obvious fluorescence quenching of Pdot-1 (~444 nm) in the presence of Fe3+ via an electron transfer (ET) process. In addition, phytic acid with six phosphate groups exhibits strong chelating ability. When phytic acid is added, phytic acid readily binds to Fe3+ and the fluorescence of Pdot-1 around 444 nm can be recovered, rendering the supersensitive and selective sensing of PA. Under the optimum conditions, this ultra-small Pdot-based nanoprobe favors the fluorescent determination of PA with the detection limit as low as 10 nM. Particularly, Pdot-1 with bright blue fluorescence exhibits low cytotoxicity. Furthermore, the small-sized and biocompatible Pdot-1 can be applied to the sensitive fluorescence assay for PA in cell extracts and the efficient imaging of PA in live cells.
关键词: Fluorescence,Imaging,Small-sized conjugated polyelectrolyte dots,Phytic acid
更新于2025-11-14 15:29:11
-
A mitochondria targetable and viscosity sensitive fluorescent probe and its applications for distinguishing cancerous cells
摘要: The determination of mitochondrial viscosity is of great importance owing to its crucial roles in the diffusion-mediated processes. It has demonstrated that the viscosity in cancer cells is higher than normal cells. Developing of viscosity sensitive fluorescent probes for distinguishing normal cells and cancer cells is necessary. Herein, we present a mitochondrial-targeting fluorescent probe PFV for the detection of viscosity in live cells. It exhibited outstanding sensitivity to viscosity, free from disturbing by ROS/sulfuret even at high concentrations. Equipped with mitochondria targeting ability, PFV was then applied to mitochondrial viscosity detection. Most importantly, by viscosity monitoring PFV successfully differentiated normal hepatic cells and cancerous hepatic cells. The present study would offer a broadly applicable for the determination of viscosity in complex systems.
关键词: fluorescence imaging,mitochondrial viscosity,fluorescent probe,cyanine dye,viscosity
更新于2025-11-14 15:29:11
-
In Situ Synthesis of Fluorescent Mesoporous Silica–Carbon Dot Nanohybrids Featuring Folate Receptor-Overexpressing Cancer Cell Targeting and Drug Delivery
摘要: Multifunctional nanocarrier-based theranostics is supposed to overcome some key problems in cancer treatment. In this work, a novel method for the preparation of a fluorescent mesoporous silica–carbon dot nanohybrid was developed. Carbon dots (CDs), from folic acid as the raw material, were prepared in situ and anchored on the surface of amino-modified mesoporous silica nanoparticles (MSNs–NH2) via a microwave-assisted solvothermal reaction. The as-prepared nanohybrid (designated MSNs–CDs) not only exhibited strong and stable yellow emission but also preserved the unique features of MSNs (e.g., mesoporous structure, large specific surface area, and good biocompatibility), demonstrating a potential capability for fluorescence imaging-guided drug delivery. More interestingly, the MSNs–CDs nanohybrid was able to selectively target folate receptor-overexpressing cancer cells (e.g., HeLa), indicating that folic acid still retained its function even after undergoing the solvothermal reaction. Benefited by these excellent properties, the fluorescent MSNs–CDs nanohybrid can be employed as a fluorescence-guided nanocarrier for the targeted delivery of anticancer drugs (e.g., doxorubicin), thereby enhancing chemotherapeutic efficacy and reducing side effects. Our studies may provide a facile strategy for the fabrication of multifunctional MSN-based theranostic platforms, which is beneficial in the diagnosis and therapy of cancers in future.
关键词: Targeted drug delivery,Fluorescence imaging,Mesoporous silica nanoparticles,Carbon dots,Chemotherapy
更新于2025-11-14 14:48:53
-
Raman/XRF/EDX microanalysis of 2nd-century stuccoes from Domus Valeriorum in Rome
摘要: 2nd-century stucco fragments from the roman Domus Valeriorum were analyzed by Raman spectroscopy (Raman), imaging X-ray fluorescence (XRF) and energy dispersive X-ray microanalysis (EDX) in order to identify the pigments and materials thereon. Cinnabar, malachite, hematite, goethite and Egyptian blue were detected by the synergistic use of these techniques whereas calcite, with some traces of gypsum, was detected as materials for the bas-relief figures and the pictorial background. This non-destructive characterization is the first carried out on the Domus Valeriorum finds. The multi-analytical approach highlighted the complementarity and versatility of these techniques, suitable for both laboratory and in-situ analysis, on macroscopic or microscopic fragments without preliminary manipulation.
关键词: Energy dispersive X-ray fluorescence,X-ray fluorescence imaging,Domus Valeriorum,Pigments,Raman spectroscopy
更新于2025-09-23 15:23:52
-
Prospective feasibility study for single-tracer sentinel node mapping by ICG (indocyanine green) fluorescence and OSNA (one-step nucleic acid amplification) assay in laparoscopic gastric cancer surgery
摘要: Background The double-tracer method has been established for sentinel node (SN) mapping in gastric cancer surgery. However, there remain several unresolved issues that prevent its widespread use in clinical practice. In this study, we aimed to demonstrate the feasibility of single-tracer SN mapping in laparoscopic surgery for gastric cancer, using indocyanine green (ICG) fluorescence imaging with a one-step nucleic acid amplification (OSNA) assay intraoperatively. Methods Patients with clinical T1N0M0 gastric adenocarcinoma preoperatively were considered for inclusion if they had a single primary lesion 4 cm or less in maximal diameter. Immunohistochemical staining with the anti-cytokeratin 19 antibody was performed on preoperative biopsy specimens, and patients with faint positive reactions were excluded. Intraoperatively, single-tracer SN biopsy with ICG fluorescence imaging was performed, followed by laparoscopic gastrectomy with modified D1+ or D2 lymph node dissection. Results Twenty eligible patients underwent SN biopsy and laparoscopic gastrectomy. SNs were identified in 17 cases (85%), with a median number of three SNs per patient. The median times for SN mapping and OSNA assay were 19 and 35 min, respectively. OSNA assay detected one metastatic lymph node, but all other nodes were negative. No adverse effects were observed in relation to SN mapping. Conclusions Single-tracer SN mapping by ICG fluorescence imaging with intraoperative diagnosis by OSNA assay is feasible and safe. SNs can be identified in most patients, without producing false-negative results. Further clinical trial to demonstrate the sensitivity is ongoing.
关键词: Fluorescence imaging,Indocyanine green,Sentinel lymph node,Surgical pathology,Gastric cancer
更新于2025-09-23 15:23:52